Сталь – востребованный в промышленной и строительной сферах материал, который отличается высокими эксплуатационными характеристиками и отлично подходит для возведения зданий, сооружений, мостов и других объектов.
При проектировании определенных конструкций инженеры учитывают свойства стали, среди которых – предел текучести. Стоит подробнее рассмотреть, что представляет собой нормативная характеристика, и как ее правильно рассчитать.
Каждый конструктор должен знать все о механических свойствах материала, с которым работает. Предел текучести – максимально допустимая нагрузка, которая не разрушит конструкцию в момент приложения.
Чем выше обозначение показателя, тем более прочным считается изделие, и тем большую нагрузку оно способно выдержать. Разрушение или серьезная деформация строительных элементов, используемых для возведения различных объектов, недопустимо.
Поэтому при проектировании необходимо в обязательном порядке учитывать предел текучести, который предупреждает серьезные разрушения конструкций с возможностью появления человеческих жертв.
Если рассматривать предел текучести на практике, то он определяет, какую нагрузку можно прикладывать материалу и деталям или элементам, которые были из него изготовлены. Другими словами, предел текучести – особая нагрузка, которую способно выдержать:
- здание;
- сооружение;
- механизм.
Ранее показатель определяли посредством проведения опытов, и лишь в XIX веке ученые пришли к сопромату или теории сопротивления материалов. Теперь вопрос надежности решается заложенным в материал запасом прочности. Увеличение этого показателя привело к повышению стоимости конструкций и расширению возможностей строительной и промышленной сфер.
Свойства металла определяет тип кристаллической решетки, которая формируется исходя из процентного содержания углерода в составе.
Отследить зависимость строения решетки от количества углеродных соединений можно на специальной структурной диаграмме. Например, если металл содержит 0,06% углерода, то это феррит, для которого характерна особая структура решетки – зернистая.
Среди свойств материала выделяют прочность и повышенную текучесть, что позволяет ему выдерживать большие нагрузки.
По структуре стали классифицируют на:
- ферритную;
- перлитно- или цементитно-ферритовую;
- цементитно-перлитовую;
- перлитную.
Каждый металл обладает своими характеристиками и показателем текучести, определяющим максимальную несущую способность материала, при которой он не будет деформироваться или разрушаться.
Представляют собой специальные добавки, за счет них удается поднять степень, при которой происходит раскисление материала.
Дополнительно посредством применения этих элементов получается уменьшить вредное воздействие серы, и улучшить технические характеристики. Кремний, например, повышает свариваемость металла.
Среднее содержание компонента составляет 0,38%. В основном добавление элемента происходит в период раскисления материала.
Серу используют в виде хрупких сульфитов, способных изменить механические показатели сплава. Чем больше этого элемента, тем ниже:
- пластичность;
- текучесть;
- вязкость.
При чрезмерных добавлениях серы свойства металла ухудшаются, он становится неустойчив к коррозии и сильному истиранию, быстро приходит в негодность. Фосфор служит для повышения показателя текучести и уменьшения пластичности сплава. Однако в больших количествах компонент также способен навредить металлу. Поэтому оптимальные значения серы и фосфора достигают соответственно 0,025% и 0,044%.
Компоненты неметаллического типа, посредством которых понижают механические свойства сплава. Большое содержание кислорода ускоряет коррозионные процессы и укорачивает срок службы изделия, также наличие подобного компонента негативно отражается на показателях пластичности и вязкости.
Азот, наоборот, способен повысить прочность материала. Однако в этом случае страдает предел текучести, а это значит, что металл не сможет вынести большие нагрузки.
Они улучшают «физику» стали, повышая такие показатели, как текучесть, вязкость удара и прочность. Наличие подобных добавок предотвращает несвоевременные деформации и растрескивание материала. Среди распространенных компонентов:
- вольфрам;
- никель;
- титан;
- ванадий.
А также в качестве легирующей добавки используют хром.
У сталей разных марок разный предел текучести. Если рассматривать варианты сортового проката размером 80 мм, то для них характерны следующие значения.
- 20. Текучесть при температуре в 20 градусов по Цельсию достигает 245 Н/мм2. Если переводить в килограмм-силы, то показатель равен 25 кгс/мм2.
- 30. Параметр достигает 295 Н/мм2 или 36 кгс/мм2.
- 45. Максимальный предел текучести обладает значением 355 Н/мм2, которое достигается при температуре в 20 градусов по Цельсию после нормализации стали.
Дополнительно ГОСТ 1050-88 предусматривает для ряда сталей измененные параметры нормативного предела текучести, которые определяются исходя из требований потребителя и возможностей изготовителя. Например, образцы, вырезанные из заготовок, подвергшихся термической обработке, выдают следующие значения.
- Сталь 30. Параметр зависит от толщины листовой стали. Прокат, размер которого не превышает 16 мм, демонстрирует предел текучести в 400 Н/мм2, от 16 до 40 мм – 355 Н/мм2, от 40 до 100 мм – от 295 Н/мм2.
- Сталь 45. При таких же размерах показатели предела текучести составляют соответственно 490 Н/мм2, 430 Н/мм2 и 375 Н/мм
- Сталь 40Х и 40ХН. Легированный хромистый материал, характеристики которого регулирует ГОСТ 4543-71. Прокат размером 25 мм обладает пределом текучести в 785 Н/мм2. Такого показателя удается добиться после прохождения металлом термической обработки. У стали 45Х показатель выше.
- Сталь 09Г2С. Основные характеристики представлены в ГОСТ 5520-79. Сталь представляет конструкционный низколегированный материал, используемый для сборки сварных конструкций. Особенность марки – высокая прочность, максимальная текучесть составляет 345 Н/мм2. Чем выше температура эксплуатации материала, тем ниже показатель, и тем больше требований по использованию.
- Сталь 3. Представляет металл с большим содержанием углерода, характеристики которого можно посмотреть в ГОСТ 380-200. Производители выпускают несколько марок такого вида стали: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп, С245. У каждой марки своя текучесть, которая лежит в пределах от 195 до 235 Н/мм2.
А также существуют показатели для сталей 35, 50, 20Х, С245, 10ХСНД и других марок. Чем выше показатель, тем более высокопрочный материал и выше его устойчивость к внешним воздействиям в виде внушительных нагрузок.
Френкель – один из известных ученых, которому приписывают гениальное допущение. Ранее под изменением материала формы понимали деформацию, которая происходит в результате воздействия на структуру материала напряжений сдвига.
В рукописях прошлого столетия полагали, что для запуска пластической деформации материала достаточно сдвига одной половины изделия до точки, когда уже невозможно вернуться в первоначальное положение.
Френкель первым выдвинул предположение, что у материала может быть особое строение, которое включает кристаллы или представляет полукристаллическое пространство, что свойственно, например, для:
- металлов 30ХГСА, 5, 65Г, 17Г1С и других марок;
- керамики;
- полимеров.
Подобный вид строения материала говорит о существовании пространственной решетки, в узлах которой собрано определенное количество атомов.
Строение решеток бывает разным и строго уникальным для каждого вещества, где также отличаются расстояния между атомами в узлах решетки.
Поэтому для вызова сдвига и деформации, которая после него следует, необходимо приложить усилия для разрыва межатомных связей.
Предел текучести – особый показатель напряжения, которое необходимо для разрыва связей между атомами.
Приложение подобного усилия приведет к смещению элементов относительно друг друга без возможности возвращения первоначального положения, так как силы упругости уже не будут действовать.
В макромире прикладывание усилий, равных пределу текучести, приводит к развитию в материале деформаций пластического типа, способных изменить его форму и размеры. Результатом такого воздействия становится изменение формы и тела стали с последующим отказом и разрушением структуры.
Расчетное сопротивление определяют посредством испытаний стандартных образцов. По мере исследования формируется график, по которому удается узнать, где сталь «течет».
Испытания для определения показателя текучести проводят с применением предварительно подготовленных образцов и специального оборудования. Вот основные этапы исследования.
- Сначала цилиндрический образец, сечение которого составляет 20 мм в диаметре и 10 мм в длине, ставят в предварительно подготовленную установку.
- Оборудование запускают, и начинают замеры, постепенно отмечая результаты в тетради или блокноте, а также отслеживая диаграмму растяжения на экране, если есть такая возможность.
- Строят график, где наглядно отображается изменение структуры образца.
- Фиксируют значение усилия при разрушении цилиндра.
Далее приступают к оценке графика. Как показывают результаты, небольшая нагрузка приводит к прямо пропорциональному удлинению образца.
При постепенном увеличении силы растяжения заготовка достигает предела, где заканчивается пропорциональность, после чего изделие достигает точки невозврата, когда исходник не сможет вернуться к первоначальной длине при снятии нагрузки.
Со временем даже без изменения нагрузки деталь продолжит меняться, пока не достигнет предела и не разрушится.
Например, недавно проведенные испытания доказали, что стальной прут Ст3 разрушается при достижении нагрузки в 2450 кг.
Предел текучести стали
Разные материалы по-разному реагируют на приложенную к ним внешнюю силу, вызывающую изменение их формы и линейных размеров. Такое изменение называют пластической деформация. Если тело после прекращения воздействия самостоятельно восстанавливает первоначальную форму и линейные размеры — такая деформация называется упругой.
Упругость, вязкость, прочность и твердость являются основными механическими характеристиками твердых и аморфных тел и обуславливают изменения, происходящие с физическим телом при деформации под действием внешнего усилия и ее предельном случае — разрушении.
Предел текучести материала — это значение напряжения (или силы на единицу площади сечения), при котором начинается пластическая деформация.
Поведение сталей при высоких температурах
Текучесть металла
Знание механических свойств материала чрезвычайно важно для конструктора, который использует их в своей работе.
Он определяет максимальную нагрузку на ту или иную деталь или конструкцию в целом, при превышении которой начнется пластическая деформация, и конструкция потеряет с вою прочность, форму и может быть разрушена.
Разрушение или серьезная деформация строительных конструкций или элементов транспортных систем может привести к масштабным разрушениям, материальным потерям и даже к человеческим жертвам.
Предел текучести — это максимальная нагрузка, которую можно приложить к конструкции без ее деформации и последующего разрушения. Чем выше его значения, тем большие нагрузки конструкция сможет выдержать.
Текучесть металла
На практике предел текучести металла определяет работоспособность самого материала и изделий, изготовленных из него, под предельными нагрузками. Люди всегда прогнозировали предельные нагрузки, которые могут выдержать возводимые ими строения или создаваемые механизмы.
На ранних этапах развития индустрии это определялось опытным путем, и лишь в XIX веке было положено начало созданию теории сопротивления материалов. Вопрос надежности решался созданием многократного запаса по прочности, что вело к утяжелению и удорожанию конструкций.
Сегодня необязательно создавать макет изделия определенного масштаба или в натуральную величину и проводить на нем опыты по разрушению под нагрузкой — компьютерные программы семейства CAE (инженерных расчетов) могут с точностью рассчитать прочностные параметры готового изделия и предсказать предельные значения нагрузок.
Величина предела текучести материала
С развитием атомной физики в XX веке появилась возможность рассчитать значение параметра теоретическим путем. Эту работы первым проделал Яков Френкель в 1924 году.
Исходя из прочности межатомных связей, он путем сложных для того времени вычислений определил величину напряжения, достаточного для начала пластической деформации тел простой формы.
Величина предела текучести материала будет равна
ττ=G/2π. , где G — модуль сдвига, как раз и определяющий устойчивость связей между атомами.
Расчет величины предела текучести
Гениальное допущение, сделанное Френкелем при расчетах, заключалось в том, что процесс изменения формы материала рассматривался как приводимый в действие напряжениями сдвига. Для начала пластической деформации полагалось достаточным, чтобы одна половина тела сдвинулась относительно другой до такой степени, чтобы не смогла вернуться в начальное положение под действием сил упругости.
График физического предела текучести
Френкель предположил, что испытываемый в мысленном эксперименте материал имеет кристаллическое или поликристаллическое строение, свойственно для большей части металлов, керамики и многих полимеров.
Такое строение предполагает наличие пространственной решетки, в узлах которой в строго определенном порядке расположены атомы. Конфигурация этой решетки строго индивидуальны для каждого вещества, индивидуальны и межатомные расстояния и связывающие эти атомы силы.
Таким образом, чтобы вызвать пластическую деформацию сдвига, потребуется разорвать все межатомные связи, проходящие через условную плоскость, разделяющую половины тела.
При некотором значении напряжения, равному пределу текучести, связи между атомами из разных половин тела разорвутся, и рады атомов сместятся друг относительно друга на одно межатомное расстояние без возможности вернуться в исходное положение. При продолжении воздействия такой микросдвиг будет продолжаться, пока все атомы одной половины тела не потеряют контакт с атомами другой половины
В макромире это вызовет пластическую деформацию, изменит форму тела и при продолжении воздействия приведет к его разрушению. На практике линия начала разрушений проходит не посередине физического тела, а находится в местах расположения неоднородностей материала.
Физический предел текучести
В теории прочности для каждого материала существует несколько значений этой важной характеристики.
Физический предел текучести соответствует значению напряжения, при котором, не смотря на деформацию, удельная нагрузка не меняется вовсе или меняется несущественно.
Иными словами, это значение напряжения, при котором физическое тело деформируется, «течет», без увеличения прилагаемого к образцу усилия
Условный предел текучести
Большое число металлов и сплавов при испытаниях на разрыв демонстрируют диаграмму текучести с отсутствующей или слабо выраженной «площадкой текучести». Для таких материалов говорят о условном пределе текучести. Его трактуют как напряжение, при котором происходит деформация в переделах 0,2%.
Условный предел текучести
К таким материалам относятся легированные и высокоуглеродистые стальные сплавы, бронза, дюралюминий и многие другие. Чем более пластичным является материал, тем выше для него показатель остаточных деформаций. Примером пластичных материалов могут служить медь, латунь, чистый алюминий и большинство низкоуглеродистых стальных сплавов.
Сталь, как самый популярный массовый конструкционный материал, находится под особо пристальным вниманием специалистов по расчету прочности конструкций и предельно допустимых нагрузок на них.
Стальные сооружения в ходе их эксплуатации подвергаются большим по величине и сложным по форме комбинированным нагрузкам на растяжение, сжатие, изгиб и сдвиг. Нагрузки могут быть динамическими, статическими и периодическими.
Несмотря на сложнейшие условия использования, конструктор должен обеспечить у проектируемых им конструкций и механизмов долговечность, безотказность и высокую степень безопасности как для персонала, таки для окружающего населения.
Предел текучести стали
Поэтому к стали и предъявляются повышенные требования по механическим свойствам.
С точки зрения экономической эффективности, предприятие стремится снизить сечение и другие размеры производимой им продукции, чтобы снизить материалоемкость и вес и повысить, таким образом, эксплуатационные характеристики.
На практике это требование должно быть сбалансировано с требования ми по безопасности и надежности, зафиксированными в стандартах и технических условиях.
Предел текучести для стали является ключевым параметрам в этих расчетах, поскольку он характеризует способность конструкции выдерживать напряжения без необратимых деформаций и разрушения.
Влияние содержание углерода на свойства сталей
Согласно физико-химическому принципу аддитивности, изменение физических свойств материалов определяется процентным содержанием углерода.
Повышение его доли до 1,2% дает возможности увеличить прочность, твердость, предел текучести и пороговую хладоемкость сплава.
Дальнейшее повышение доли углерода приводит к заметному снижению таких технических показателей, как способность к свариваемости и предельная деформация при штамповочных работах. Стали с низким содержанием углерода демонстрируют наилучшую свариваемость.
Азот и кислород в сплаве
Эти неметаллы из начала таблицы Менделеева являются вредными примесями и снижают механические и физические характеристики стали, такие, например, как порог вязкости, пластичность и хрупкость.
Если кислород содержится в количестве свыше 0,03%- это ведет к ускорению старения сплава, а азот увеличивает ломкость материала.
С другой стороны, содержание азота повышает прочность, снижая предел текучести.
Микроструктура сплава, в составе которого присутствуют азот и кислород
Добавки марганца и кремния
Легирующая добавка в виде марганца применяется для раскисления сплава и компенсации отрицательного влияния вредных серосодержащих примесей. Ввиду своей близости по свойствам к железу существенного самостоятельного влияния на свойства сплава марганец не оказывает. Типовое содержание марганца – около 0,8%.
Кремний оказывает похожее воздействие, его добавляют в процессе раскисления в объемной доле, не превышающей 0,4%. Поскольку кремний существенно ухудшает такой технический показатель, как свариваемость стали. Для конструкционных сталей, предназначенных для соединения сваркой, его доля не должна превышать 0,25%. На свойства стальных сплавов кремний влияния не оказывает.
Примеси серы и фосфора
- Сера является исключительно вредной примесью и отрицательно воздействует на многие физические свойства и технические характеристики.
- Предельно допустимое содержание этого элемента в виде хрупких сульфитов– 0,06%
- Сера ухудшает пластичность, предел текучести, ударную вязкость, износостойкость и коррозионную стойкость материалов.
Фосфор оказывает двоякое воздействие на физико-механические свойства сталей. С одной стороны, с повышением его содержания повышается предел текучести, однако с другой стороны, одновременно понижаются вязкость и текучесть. Обычно содержание фосфора находится в пределах от 0,025 до 0,044%. Особенно сильное отрицательное влияние фосфор оказывает при одновременном повышении объемных долей углерода.
Легирующие добавки в составе сплавов
Легирующими добавками называют вещества, намеренно введенные в состав сплав для целенаправленного изменения его свойств до нужных показателей. Такие сплавы называют легированными сталями. Лучших показателей можно добиться, добавляя одновременно несколько присадок в определенных пропорциях.
Влияние легирующих элементов на свойства стали
Распространенными присадками являются никель, ванадий, хром, молибден и другие. С помощью легирующих присадок улучшают значение предела текучести, прочности, вязкости, коррозионной стойкости и многих других физико-механических и химических параметров и свойств.
Текучесть расплава металла
Текучестью расплава металла называют его свойство полностью заполнять литейную форму, проникая в малейшие полости и детали рельефа. От этого зависит точность отливки и качество ее поверхности.
Жидкий металл для процессоров
Свойство можно усилить, если поместить расплав под избыточное давление. Это физическое явление используется в установках литья под давлением. Такой метод позволяет существенно повысить производительность процесса литья, улучшить качество поверхности и однородность отливок.
Испытание образца для определения предела текучести
Чтобы провести стандартные испытания, используют цилиндрический образец диаметром 20 мм и высотой 10 мм, закрепляют его в испытательной установке и подвергают растягиванию. Расстояние между нанесенными на боковой поверхности образца метками называют расчетной длиной. В ходе измерений фиксируют зависимость относительного удлинения образца от величины растягивающего усилия.
Зависимость отображают в виде диаграммы условного растяжения. На первом этапе эксперимента рост силы вызывает пропорциональное увеличение длины образца.
По достижении предела пропорциональности диаграмма из линейной превращается в криволинейную, теряется линейная зависимость между силой и удлинением.
На этом участке диаграммы образец при снятии усилия еще может вернуться к исходным форме и габаритам.
Для большинства материалов значения предела пропорциональности и предела текучести настолько близки, что в практических применениях разницу между ними не учитывают.
Предел текучести стали
За достаточно длительный период работы, связанной с металлом, я понял, что далеко не каждый человек может похвастаться возможностью предельно легко рассказать и показать, что же такое предел текучести.
Я же постараюсь достаточно быстро и без особых проблем рассказать все, что сам сумел понять за годы работы в этой отрасли. Всем устроиться поудобнее, сейчас мы начнём.
Текучесть металла
Механические свойства металла, крайне важны для каждого конструктора, который использует их для своей работы.
Что касательно данной особенности, то она в обязательном порядке влияет на максимально допустимую нагрузку на деталь, либо конструкцию.
При повышении показателя возникает деформация, в некоторых случаях конструкция может быть полностью разрушена. Стоит понимать, что данная проблема может в свою очередь привести к очень серьезным разрушениям и к человеческим жертвам.
Если говорить о пределе текучести, то это, по сути, максимально допустимая нагрузка, которая возможна, до момента разрушения конструкции. Чем выше допустимый предел, тем выше вероятность устойчивости всей конструкции.
Если говорить с практической точки зрения, то здесь в первую очередь речь идет о работоспособности материала либо изделия. Люди на протяжение длительного времени прогнозировали максимально допустимые нагрузки на определенные изделия и не только. Теория сопротивляемости металлов появилось только в начале 19 века, а до этого, все эти особенности определялись, что называется на практике.
В настоящее время, в век высоких технологий, справиться с поставленной задачей возможно даже с помощью специальных компьютерных программ.
Величина предела текучести металла
В то время, когда атомная физика начала развиваться в значительной степени, удалось рассчитать значение параметра путем теории. Что касательно данной работы, то ее впервые выполнил знаменитый Яков Френкель, еще в далеком 1924 году.
Собственно говоря, его работа была достаточно сложной и действительно требующей внимания, именно по этой причине была изобретена особая формула, которая поможет всем справиться с поставленной задачей.
Величина текучести металла равна Тт=G/2тт, где G является модулем сдвига.
Для начала пластической деформации считалось, что будет достаточным, чтобы первая половина тела подверглась сдвигу относительно другой, до того эффекта, что возвращение в начальное положение невозможно.
Физический предел текучести
Если говорить более простым и понятным для каждого человека языком, то в настоящее время для каждого материала имеется своя характеристика этого важного показателя.
Физический предел текучести, равен значению напряжения, при этом, невзирая на деформацию, удельная нагрузка совершенно не изменяется, или же меняется, но в незначительной степени. Это необходимо понимать в обязательном порядке, поскольку именно данное значение имеет огромное значение.
Условный предел текучести
Значительная часть металлов, а также сплавов при работах на разрыв показывают слабо выраженную площадку текучести, либо совершенно никакой текучести. Именно в этом случае речь и идет о так называемом условном пределе текучести. Чаще всего речь идет о напряжении, при котором имеется деформация в 0.2 процента.
Если говорить о таких материалах, то в данном случае речь идет о бронзе, дюралюминий и так далее. В том случае, если материал пластичный, то и показатель остаточной деформации будет высоким. Что касательно пластичных материалов, то здесь можно выделить медь, латунь, алюминий и так далее.
Если говорить о стали, то ни для кого не секрет, что данный материал является одним из наиболее популярных и востребованных металлов, по этой причине и со стороны специалистов имеется достаточно высокий предел внимания в смысле нагрузок.
Что касательно стальных сооружений, то они в свою очередь действительно серьезным образом подвергаются нагрузкам. Тем не менее, вам необходимо понимать, что металл должен обязательно сопротивляться нагрузкам, иметь высокий показатель безопасности и так далее.
Также сталь должна иметь высокий показатель механических свойств. Сбалансированность в данном случае должна быть одной из главных особенностей.
Предел текучести стали является одним из главных показателей, на который в обязательном порядке необходимо обращать пристальное внимание.
Влияние содержания углерода на свойства сталей
Изменение физических свойств материалов определяется наличием углерода. В том случае, если присутствует до 1.2 процентов углерода, то получается добиться наиболее прочного материала.
Тем не менее, нужно понимать, что более высокий показатель содержания углерода приводит к не самым положительным последствиям. К примеру, снижается свариваемость и предельная деформация. А это, очень важный показатель, на который в обязательном порядке стоит обратить внимание.
Очень надеюсь, что вам действительно было интересно и полезно!
Предел текучести
Если охарактеризовать понятие предела текучести кратко, то в сопротивлении материалов пределом текучести называют напряжение, при котором начинает развиваться пластическая деформация. Предел текучести относится к характеристикам прочности.
Согласно [1], текучесть — это макропластическая деформация с весьма малым упрочнением dτ/dγ.
Физический предел текучести — это механическая характеристика материалов: напряжение, отвечающее нижнему положению площадки текучести в диаграмме растяжения для материалов, имеющих эту площадку (рисунок), σТ=PТ/F0. Здесь PТ — это нагрузка предела текучести, а F0 — это первоначальная площадь поперечного сечения образца.
Предел текучести устанавливает границу между упругой и упруго-пластической зонами деформирования. Даже небольшое увеличение напряжения (нагрузки) выше предела текучести вызывает значительные деформации. [2]
Условный предел текучести
Условный предел текучести (он же технический предел текучести).
Для материалов, не имеющих на диаграмме площадки текучести, принимают условный предел текучести — напряжение, при котором остаточная деформация образца достигает определённого значения, установленного техническими условиями (большего, чем это установлено для предела упругости). [2] Под условным пределом текучести обычно подразумевают такое напряжение, при котором остаточная деформация составляет 0,2%. Таким образом обычно условный предел текучести при растяжении обозначается σ0,2.
Выделяют также условный предел текучести при изгибе и условный предел текучести при кручении.
Предел текучести металла
Характеристика, данная выше, справедлива в первую очередь для предела текучести металла. Предел текучести металла измеряется в кг/мм2 или Н/м2.
На значение предела текучести металла влияют самые разные факторов, например: толщина образца, режим термообработки, наличие тех или иных примесей и легирующих элементов, микроструктура, тип и дефекты кристаллической решётки и др. Предел текучести металлов сильно меняется с изменением температуры.
Предел текучести стали
Предел текучести сталей в ГОСТах указывается с пометкой «не менее», единица измерения МПа. Приведём в качестве примера регламентируемые значения предела текучести σТ некоторых распространённых сталей.
Для сортового проката базового исполнения (ГОСТ 1050-88, сталь конструкционная углеродистая качественная) диаметром или толщиной до 80 мм справедливы следующие значения предела текучести сталей:
- Предел текучести стали 20 (Ст20, 20) при T=20°С, прокат, после нормализации — не менее 245 Н/мм2 или 25 кгс/мм2.
- Предел текучести стали 30 (Ст30, 30) при T=20°С, прокат, после нормализации — не менее 295 Н/мм2 или 30 кгс/мм2.
- Предел текучести стали 45 (Ст45, 45) при T=20°С, прокат, после нормализации — не менее 355 Н/мм2 или 36 кгс/мм2.
Для этих же сталей, изготавливаемых по согласованию потребителя с изготовителем, ГОСТ 1050-88 предусматривает иные характеристики. В частности, нормированный предел текучести сталей, определяемый на образцах, вырезанных из термически обработанных стальных заготовок указанного в заказе размера, будет иметь следующие значения:
- Предел текучести стали 30 (Ст30, закалка+отпуск): прокат размером до 16 мм — не менее 400 Н/мм2 или 41 кгс/мм2; прокат размером от 16 до 40 мм — не менее 355 Н/мм2 или 36 кгс/мм2; прокат размером от 40 до 100 мм — не менее295 Н/мм2 или 30 кгс/мм2.
- Предел текучести стали 45 (Ст45, закалка+отпуск): прокат размером до 16 мм — не менее 490 Н/мм2 или 50 кгс/мм2; прокат размером от 16 до 40 мм — не менее 430 Н/мм2 или 44 кгс/мм2; прокат размером от 40 до 100 мм — не менее 375 Н/мм2 или 38 кгс/мм2.
- *Механические свойства стали 30 распространяются на прокат размером до 63 мм.
- Предел текучести стали 40Х (Ст 40Х, сталь конструкционная легированная, хромистая, ГОСТ 4543-71): для проката размером 25 мм после термообработки (закалка+отпуск) — предел текучести стали 40Х не менее 785 Н/мм2 или 80 кгс/мм2.
Предел текучести стали 09Г2С (ГОСТ 5520-79, лист, сталь 09Г2С конструкционная низколегированная для сварных конструкций, кремнемарганцовистая).
Минимальное значение предела текучести стали 09Г2С для стального проката в зависимости от толщины листа меняется от 265 Н/мм2 (27 кгс/мм2) до 345 Н/мм2 (35 кгс/мм2).
Для повышенных температур минимальное требуемое значение предела текучести стали 09Г2С составляет: для Т=250°C — 225 (23); для Т=300°C — 196 (20); Т=350°C — 176 (18); Т=400°C — 157 (16).
Предел текучести стали 3. Сталь 3 (углеродистая сталь обыкновенного качества, ГОСТ 380—2005) изготавливается следующих марок: Ст3кп, Ст3пс, Ст3сп, Ст3Гпс, Ст3Гсп. Предел текучести стали 3 регламентируется отдельно для каждой марки. Так, например, требования к пределу текучести Ст3кп, в зависимости от толщины проката, меняются от 195-235 Н/мм2 (не менее).
Текучесть расплава
Текучесть расплава металла — это способность расплавленного металла заполнять литейную форму. Текучесть расплава для металлов и металлических сплавов — то же что и жидкотекучесть. (См. Литейные свойства сплавов).
Текучесть жидкости вообще и расплава в частности есть величина, обратная динамической вязкости. В Международной системе единиц (СИ) текучесть жидкости выражается в Па-1*с-1.
Подготовлено: Корниенко А.Э. (ИЦМ)
Лит.:
- Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. — М.:*МИСИС*, 1997. — 527 с.
- Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. — 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. — 199 с.: ил. — (Профтехобразование). — ББК 34.2/ Ж 86/ УДЖ 620.1
- Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. ISBN 5-217-00241-1
- Бобылев А.В. Механические и технологические свойства металлов. Справочник. — М.: Металлургия, 1980. 296 с.
- Белянкин Ф.П. Энергетический предел текучести металлов. // Сборник Института строительной механики АН УССР. №9, 1948.152