Строение ротора асинхронного двигателя

Немало техники — бытовой, строительной, производственной имеют двигатели. Если задаться целью и проверить тип мотора, в 90% окажется, что стоит асинхронный двигатель. Это обусловлено простотой конструкции, высоким КПД, отсутствием электрического контакта с движущейся частью (в моделях с короткозамкнутым ротором). В общем, причин достаточно. 

Что такое асинхронный двигатель и принцип его действия

Любой электродвигатель — устройство для преобразования электрической энергии в механическую. Электрический двигатель состоит из неподвижной (статор) и подвижной части (ротор). Строение статора таково, что он имеет вид полого цилиндра, внутри которого имеется обмотка.

В это цилиндрическое отверстие вставляется подвижная часть — ротор. Он также имеет вид цилиндра, но меньшего размера. Между статором и ротором имеется воздушный зазор, позволяющий ротору свободно вращаться. Ротор вращается из-за наводимых магнитным полем статора токов.

По способу вращения двигатели делят на синхронные и асинхронные.

Так выглядит разобранный асинхронный двигатель с короткозамкнутым ротором

Асинхронный электродвигатель отличается тем, что частота вращения ротора и магнитного поля, создаваемого статором, у него неравны.

То есть, ротор вращается несинхронно с полем, что и дало название этому типу машин. Характерно, в рабочем режиме скорость его вращения меньше. Второе название этого типа двигателей — индукционные.

Это название связано с тем, что движение происходит за счёт наводимых на нём токов индукции.

Асинхронный двигатель в разобранном виде: основные узлы и части

Коротко описать принцип работы асинхронного двигателя можно так. При включении мотора на обмотки статора подаётся ток, из-за чего возникает переменное магнитное поле. В область действия силовых линий этого попадает ротор, который начинает вращаться вслед за переменным полем статора.

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя.

Изготавливают его из стали или чугуна, сваркой или литьём.

К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора.

Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка.

Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений.

Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле.

Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа.

В этой конструкции отсутствуют щетки, которые выходят из строя первыми.

Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.

Недостатки:

  • Малый пусковой крутящий момент.
  • Высокий пусковой ток (в 4-7 раз выше номинального).
  • Нет возможности регулировать скорость.
    Магнитное поле трехфазного статора толкает ротор

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение.

Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно.

В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Электродвигатели




Обмотка ротора состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (беличья клетка).

Обмотка статора (обмотка возбуждения) питается от сети переменным током – образуется вращающееся магнитное поле, которое индуцирует в обмотках ротора ток.

На проводники с током обмотки ротора со стороны магнитного поля обмотки возбуждения действуют электромагнитные силы — образуется вращающий момент, увлекающий ротор за магнитным полем.

Частота вращения ротора не может достигнуть частоты вращения магнитного поля статора (поэтому электродвигатель и называется асинхронным), в противном случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю и магнитное поле перестанет индуцировать в обмотке ротора ЭДС и создавать крутящий момент.

Читайте также:  Как сделать повербанк из аккумулятора от телефона

Асинхронный двигатель с фазным ротором

Обмотки ротора выводятся на контактные кольца, вращающиеся вместе с валом машины. С помощью металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора включается пускорегулирующий реостат. Увеличивая сопротивление реостата в момент пуска, можно увеличить пусковой момент и снизить пусковой ток.

Синхронные электродвигатели

Обмотка статора (якорная обмотка) питается от сети переменным током – образуется вращающееся магнитное поле. На роторе находится индукторная обмотка, выведенная на контактные кольца.

При пуске обмотки ротора закорачиваются накоротко или через реостат, и двигатель разгоняется в асинхронном режиме.

После выхода на скорость, близкую к номинальной, индуктор запитывается постоянным током — создаётся постоянное магнитное поле, которое сцепляется с магнитным полем статора и начинает вращаться с ним синхронно (двигатель входит в синхронизм).

Режимы работы асинхронного двигателя

  • Двигательный
  • Электродвигатель преобразует электрическую энергию, потребляемую из сети, в механическую.

  • Генераторный
  • Асинхронный двигатель переходит в генераторный режим, если ротор начинает вращаться быстрее магнитного поля – на валу появляется тормозной момент. В этом режиме электродвигатель преобразовывает механическую энергию в электрическую и отдаёт её в сеть.

  • Электромагнитного тормоза
  • Асинхронный двигатель переходит в режим электромагнитного тормоза, если ротор и магнитное поле статора вращаются в разные стороны — на валу появляется тормозной момент, но двигатель при этом продолжает потреблять электроэнергию из сети — вся потребляемая энергия идёт на нагрев двигателя.

Способы регулирования скорости вращения асинхронного двигателя

  • Реостатное
  • В цепь ротора (двигателя с фазным ротором) вводятся добавочные сопротивления — механическая характеристика двигателя становится мягче (ухудшается устойчивость работы, увеличивается скольжение), скорость снижается, при этом увеличивается пусковой момент и сохраняется перегрузочная способность. Недостатки: большие потери на реостате, скорость меняется скачками.

  • Изменением числа пар полюсов В многоскоростных двигателях, по-разному коммутируя обмотки статора, можно менять число пар полюсов, а значит и скорость вращения вала, т.к. скорость вращения магнитного поля пропорциональна числу пар полюсов. При этом способе сохраняется КПД и жёсткость механических характеристик, но снижается перегрузочная способность (которую можно сохранить, изменяя напряжение). Недостатки: ступенчатое регулирование, высокая цена, большие габариты.
  • Частотное
  • Для этого способа регулирования применяются преобразователи частоты. Если при изменении частоты сохранять неизменным магнитный поток (а для этого мы должны поддерживать постоянным соотношение U/f), то мы получаем семейство механических характеристик с одинаковой жёсткостью и перегрузочной способностью. Преимущества: плавность регулирования, отличные экономические характеристики, возможность увеличивать частоту выше 50 Гц (частоты сети).

  • Короткозамкнутый ротор (беличья клетка)
  • Фазный ротор: обмотка ротора выведена на контактные кольца, вращающиеся с валом двигателя. С помощью металлографитовых щёток в цепь ротора включается пуско-регулирующий реостат. С помощью этого реостата можно уменьшить пусковой ток и регулировать скорость вращения вала двигателя.

Обмотка статора может быть соединена по схеме «звезда» или «треугольник». Если на шильдике двигателя написано: 220/380, D/Y, то это значит, что двигатель можно включать в сеть с Uл = 220 В по схеме «треугольник», а с Uл = 380 В — по схеме «звезда».

Для IEC двигателей стандартное напряжение — 230/400 В, а для отечественных — 220/380 В.

Типоразмер

Типоразмер или габарит (Frame size) — это расстояние в миллиметрах «от пола» до оси вала двигателя. Типоразмеры отечественных двигателей (ГОСТ) и импортных (IEC, NEMA) в общем случае не совпадают: наши двигатели ниже, чем импортные той же мощности.

Материал корпуса (станины)

  • Алюминий (Aluminium)
  • Чугун (Cast Iron).

Коэффициент полезного действия (Efficiency)

  • КПД η равен отношению механической мощности на валу двигателя P2 к потребляемой из сети электрической мощности P1.
  •    P1 = √3 х U х I х cos φ    P2 = M х n / 9,55    η = P2 / P1
  • Выходная мощность меньше входной на величину потерь.

Класс энергоэффективности

  • EFF1 (High Efficiency motors)
  • EFF2 (Improved Efficiency motors)
  • EFF3 (Conventional Efficiency motors).

Монтажное исполнение

  • Лапы (Foot) литые с корпусом или прикручиваемые
  • Фланцы (Flange) с врезными отверстиями (малые фланцы) или со сквозными (большие фланцы)
  • Комбинированные — лапы и фланец.

Конструктивное исполнение по способу монтажа электродвигателей

Класс защиты корпуса двигателя IP

Стандартная степень защиты электродвигателей — IP55.

Подробнее о расшифровке кодов IP

Скорость вращения

Скорость вращения магнитного поля двигателя (синхронная скорость): n1 = 60f / p [об/мин], где p — число пар полюсов двигателя,

f — частота сети (50 Гц).

  • 2 полюса — 3000 об/мин
  • 4 полюса — 1500 об/мин (стандарт)
  • 6 полюсов — 1000 об/мин
  • 8 полюсов — 750 об/мин
  • 10 полюсов — 600 об/мин
  • 12 полюсов — 500 об/мин.

Скорость вращения ротора асинхронного двигателя меньше скорости вращения магнитного поля: n2 = n1(1 — s), где s — скольжение.

Многоскоростные электродвигатели — это двигатели, у которых ступенчатое изменение скорости реализовано с помощью переключения числа пар полюсов.

Температура окружающей среды и высота над уровнем моря

При установке двигателя выше 1000 метров над уровнем моря и при эксплуатации при повышенной температуре окружающей среды необходимо учитывать снижение (Derating) мощности двигателя (для этого есть специальные таблицы).

Класс нагревостойкости изоляции

  • B — 130° С
  • F — 150° С (достаточно для работы от преобразователя частоты)
  • H — 180° С

Номинальные характеристики двигателя для всех классов изоляции указываются для температуры охлаждающей среды +40°С.

Подробнее о классах нагревостойкости изоляции

Режим нагрузки (Duty)

  • S1 — продолжительный: двигатель работает при установившейся температуре
  • S2 — кратковременный: двигатель не успевает нагреться до установившейся температуры, но во время остановки успевает полностью охладиться
  • S3 — повторно-кратковременный: работа с постоянной нагрузкой чередуется с выключениями, при этом двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S4 — повторно-кратковременный с длительными пусками: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S5 — повторно-кратковременный с длительными пусками и электрическим торможением: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S6 — перемежающийся: работа с постоянной нагрузкой чередуется с работой на холостом ходу, при этом двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S7 — перемежающийся с длительными пусками и торможениями: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры
  • S8 — перемежающийся с периодическим изменением скорости вращения: двигатель не успевает ни нагреться, ни охладиться до установившейся температуры

Тепловая защита двигателя

  • PTC-термисторы — это резисторы, сопротивление которых мгновенно возрастает при достижении заданной температуры. От 1 до 3 термисторов соединяются последовательно для сигнализации температуры отключения (Trip), например, 155°C. Ещё одна цепочка термисторов может быть настроена на сигнал предупреждения (Alarm), например, 145°C.
  • PT100 — платиновые датчики температуры обладают высокой стойкостью к окислению и большой точностью измерения. PT100 подключаются по 2-х, 3-х или 4-х проводной схеме (чем больше проводов — тем меньше влияние помех). От 3 до 6 датчиков PT100 могут устанавливаться в обмотку статора.Для измерения температуры подшипников могут быть использованы ещё 2 датчика PT100.
  • KTY — кремниевые термодатчики с положительным коэффициентом сопротивления, характеризуются высокой линейностью характеристики, высоким быстродействием, надёжной твёрдотельной конструкцией и небольшой стоимостью.

Сервис-фактор

Двигатель с сервис-фактором 1.1 может постоянно работать с перегрузкой 10% от номинального выходного момента.

Класс по моменту (Torque class)

Класс по моменту показывает кратность пускового момента (при прямом пуске от сети) при пониженном на 5% напряжении:

  • Класс 16 — 160%
  • Класс 13 — 130%
  • Класс 10 — 100%
  • Класс 7 — 70%
  • Класс 5 — 50%

Коэффициент мощности cos φ

Коэффициент мощности (cos φ) равен отношению потребляемой двигателем активной мощности к полной мощности. Активная мощность расходуется на совершение полезной работы. Полная мощность равна геометрической сумме активной и реактивной мощности.

Реактивная мощность расходуется на намагничивание двигателя.

Антиконденсационный нагрев

Для того, чтобы перед пуском двигателя в сыром помещении просушить обмотки есть два способа:

  • Использовать двигатель со специальным встроенным нагревателем
  • Подать на одну обмотку статора напряжение от 4 до 10% номинального (чтобы пропустить ток от 20 до 30% от номинального), что достаточно для испарения конденсата (применимо не для всех двигателей). Некоторые преобразователи частоты умеют это делать.

Охлаждение

  • Поверхностное охлаждение (Non-ventilated: вентилятора нет)
  • Самовентиляция (Self-ventilated: вентилятор на валу двигателя)
  • Принудительное охлаждение (Forced cooling: независимый вентилятор или жидкостное охлаждение водой или маслом)

Для турбомеханизмов (вентиляторы и насосы, для которых момент на валу пропорционален квадрату скорости), как правило, достаточно самовентиляции. Двигатели, которые работают от преобразователей частоты с постоянным моментом длительное время на низких скоростях, необходимо или переразмеривать, или обеспечить принудительным охлаждением.

Классификация методов охлаждения электрических двигателей

Вентилятор

  • Пластиковый
  • Металлический
  • Металлический с увеличенным моментом инерции

Требования к двигателю при работе от преобразователя частоты

  • Температурный класс изоляции не ниже F
  • Возможно принудительная вентиляция (см. выше)
  • Изолированный подшипник с нерабочей стороны вала (рекомендуется для типоразмеров 225 и выше)

Подшипники

При работе от преобразователя частоты на частотах выше 50 Гц срок службы подшипников уменьшается.

У одних двигателей с рабочей стороны вала установлен плавающий подшипник (Floating bearing), а с нерабочей стороны подшипник зафиксирован (Located bearing). У других — наоборот (для сочленения с редуктором, например).

В стандартном исполнении подшипники подпружинены в аксиальном направлении (вдоль вала) для обеспечения равномерной работы двигателя. У двигателей с радиально-упорными подшипниками такой пружины нет, поэтому радиальное усилие (перпендикулярно валу — от ремня, например) должно быть приложено постоянно, иначе подшипник быстро выйдет из строя.

Смазка

Как правило, для двигателей с типоразмерами до 250, работающих в номинальном режиме, смазка рассчитана на весь срок службы подшипников. Для пополнения смазки у двигателя должен быть предусмотрен специальный ниппель.

Вал двигателя

У двигателя может быть выведен второй конец вала двигателя, который может передавать как номинальный, так и меньший момент. Второй конец вала несовместим с такими опциями как: датчик скорости и вентилятор принудительного охлаждения, а, возможно, и с тормозом.

Тормоз

При выборе тормоза необходимо учесть:

  • Тип:
    • статический (удерживающий тормоз срабатывает только при неподвижном вале)
    • динамический (можно регулировать момент торможения, меньше изнашивается в случае аварийного торможения)
  • Максимальную скорость, при которой возможно аварийное торможение
  • Момент нагрузки
  • Момент инерции
  • Число пусков
  • Напряжение питания: переменное (~220В) или постоянное (=24В)
  • Скорость срабатывания: тормоз с выключением на DC-стороне срабатывает быстрее (для подъёмника, например), чем тормоз с выключением на AC-стороне (для конвейера)

Датчик скорости

  1. Датчик скорости может находится герметично внутри корпуса (Incapsulated) или снаружи под защитной крышкой.
  2. Сервопривод
  3. Устройства плавного пуска



 © Туманов А.В., 2016-2022

Асинхронный двигатель с короткозамкнутым ротором

 

  • Калужский Электроремонтный Завод
  • PT5M11S
  • true
  • 2018-04-16

ООО «КЭРЗ» при капитальном ремонте электродвигателей производит замену подшипников качения, вне зависимости от их состояния:

  • чрезмерное нагревание (неправильный монтаж, чрезмерный износ);
  • повышенный шум в процессе работы (микро трещины, загрязнение);
  • выброс смазки из подшипника (разрушение герметизирующих уплотнений).

640

480

                        

В каждом электромоторе есть две важных рабочих детали: ротор и статор. Они находятся в защитном кожухе. Для охлаждения проводников обмотки на валу ротора установлен вентилятор. Это общий принцип строения всех типов электродвигателей.

Переменный ток активно используется в асинхронных электродвигателях, нашедших широкое применение во многих отраслях деятельности человека. Особого внимания заслуживает асинхронный двигатель с короткозамкнутым ротором, который в силу ряда причин занял прочные позиции в применении.

Конструкции статоров электродвигателей ничем не отличаются от строения этих деталей в других типах электромоторов, работающих в сетях переменного тока.

Сердечник статора, предназначенный для работы при трехфазном напряжении располагается под углом 120 градусов, по кругу.

На них устанавливаются обмотки из изолированной медной проволоки определенного сечения, которые соединяются по схемам соединений «звезда» или «треугольник». Конструкция магнитопровода статора жестко крепится на стенках корпуса.

Ротор устроен по другому. Конструкция его обмотки состоит из алюминиевых стержней, концы которых замыкают короткозамыкающие кольца. В двигателях большой мощности в качестве короткозамкнутых обмоток ротора можно увидеть применение медных стержней. У этого металла низкое удельное сопротивление.

Стержни расположены поверх сердечников ротора, которые состоят из трансформаторной стали. При изготовлении роторов сердечники монтируют на валу, апроводники обмотки впрессовывают в пазы магнитопровода. В таком случае нет необходимости в изоляции пазов сердечника.

Пластины магнитопроводов таких роторов не требуют лаковой изоляции поверхности. Они очень просты в изготовлении, что удешевляет себестоимость асинхронных электродвигателей. Ротор асинхронно вращается внутри статора. Между этими деталями устанавливаются минимальные расстояния в виде воздушных зазоров.

Оптимальный зазор находится в пределах от 0,5 до 2мм.  

Асинхронные двигатели с короткозамкнутым ротором делятся на три типа:

  1. ОДНОФАЗНЫЕ –в конструкции однофазного электродвигателя используют только одну рабочую обмотку. Для запуска вращения ротора применяют пусковую катушку индуктивности, которую через конденсатор кратковременно подключают к сети или замыкают накоротко. Эти маломощные моторчики используются в качестве электрических приводов некоторых бытовых приборов.

  2. ДВУХФАЗНЫЕ – двухфазные двигатели имеют две обмотки статора, на каждую из которых поступает переменный ток.

    Их часто используют в однофазных сетях – одну обмотку подключают напрямую к фазе, а для питания другой применяется  фазосдвигающийся конденсатор. Без конденсатора вращение вала двухфазного асинхронного двигателя не начнется самостоятельно.

    Потому что конденсатор является неотъемлемой частью двухфазного электродвигателя.  Такие электродвигатели иногда называют «конденсаторные двигатели».

  3. ТРЕХФАЗНЫЕ- Модели с трехфазными обмотками отличаются высокой стабильностью работы при номинальной нагрузке. У трехфазных асинхронных электродвигателей другое расположение обмоток статора. Такие двигатели имеют лучшие пусковые характеристики и при этом используют простую схему пуска.

Конструкция асинхронных двигателей

  Главная / Электродвигатели / Статьи / Конструкция асинхронных двигателей

В зависимости от способа выполнения обмотки ротора асинхронного двигателя последние разделяются на две большие группы: двигатели с короткозамкнутой обмоткой на роторе и двигатели с фазной обмоткой на роторе или двигатели с контактными кольцами. Двигатели с короткозамкнутой обмоткой на роторе более дешевы в производстве, надежны в эксплуатации, имеют жесткую механическую характеристику, т. е. при изменении нагрузки от нуля до номинальной частота вращения машины уменьшается всего на 2-5%.

К недостаткам этих двигателей относятся трудность осуществления плавного регулирования частоты вращения в широких пределах, сравнительно небольшой пусковой момент, а также большие пусковые токи, в 5-7 раз превышающие номинальный.

Указанными недостатками не обладают двигатели с контактными кольцами, однако конструкция ротора у них существенно сложнее, что ведет к удорожанию двигателя в целом.

Поэтому их применяют в случае тяжелых условий пуска и при необходимости плавного регулирования частоты вращения в широком диапазоне.

Как указывалось, асинхронный электродвигатель имеет неподвижную часть — статор, на котором расположена обмотка, создающая вращающееся магнитное поле, и подвижную часть — ротор, в котором создается электромагнитный момент, приводящий во вращение сам ротор и исполнительный механизм.

Сердечники статора и ротора набираются из изолированных листов электротехнической стали обычно толщиной 0,5 мм. Изоляция листов статора — лаковая пленка, ротора — окалина, образующаяся в процессе прокатки. Листы статора и ротора имеют пазы, в которых размещаются обмотки статора и ротора.

Короткозамкнутая обмотка ротора обычно выполняется литой из алюминиевого сплава. В процессе заливки образуются как стержни (проводники) обмотки, расположенные в пазах, так и замыкающие их накоротко кольца, расположенные вне сердечника ротора.

Кольца могут быть снабжены вентиляционными лопатками для улучшения вентиляции двигателя и теплоотвода от обмотки ротора. Отсутствие изоляции обмотки ротора обеспечивает хороший отвод тепла от обмотки к сердечнику.

Двигатели с короткозамкнутой обмоткой на роторе имеют ряд конструктивных исполнений по форме пазов на роторе. Форма пазов ротора выбирается в зависимости от требований к пусковым характеристикам двигателя. Наиболее рациональными для пазов ротора с одной клеткой являются трапецеидальные овальные пазы.

Ротор называется глубокопазным, если высота паза ротора превышает глубину проникновения магнитного поля (для обмоток из алюминия двигателей промышленной частотой 50 Гц эта глубина равна 15 мм). В тех случаях, когда требуются большие значения пускового момента, применяется ротор с двойной клеткой, причем пазы в этом случае могут чередоваться. Пазы могут быть закрытыми или полузакрытыми.

Короткозамыкающие кольца в случае литых двойных клеток выполняются общими для обеих клеток.

В ряде случаев обмотка двухклеточного двигателя выполняется из цветных металлов на основе меди. Тогда внешняя обмотка изготавливается из латуни или специальной бронзы, благодаря чему обеспечивается относительно большое ее активное сопротивление. Эта обмотка выполняет функции пусковой в асинхронном двигателе.

Другая обмотка ротора — внутренняя — изготовляется из меди с минимальным активным сопротивлением. Она выполняет функции основной рабочей обмотки двигателя. Обе обмотки могут иметь круглые пазы, однако внутренняя обмотка в ряде случаев выполняется прямоугольной или овальной формы.

Короткозамыкающие торцевые кольца для обеих обмоток обычно изготовляются из меди.

Общий вид асинхронного двигателя: подшипники — 1 и 11, вал — 2, подшипниковые щиты — 3 и 9, ротор — 5, статор — 6, вентилятор — 10, колпак — 12, ребра — 13, лапы — 14

Существуют другие модификации пазов ротора (бутылочного и трапецеидального профиля), однако описанные выше являются наиболее характерными для асинхронных двигателей.

Асинхронные двигатели с фазным ротором обычно имеют полузакрытые пазы на роторе, в которые укладывается трехфазная обмотка с тем же числом полюсов, что и обмотка статора. Предварительно изолированные стержни этой обмотки заводят с торцевой стороны ротора.

Фазы роторной обмотки обычно соединяют в звезду и подводят к трем контактным кольцам, расположенным на валу двигателя и изолированным друг от друга.

В цепь обмотки фазного ротора с помощью контактных колец и соприкасающихся с ним щеток можно подключать добавочные сопротивления или вводить дополнительную ЭДС. Это используется при необходимости изменения рабочих или пусковых характеристик двигателей. Кроме того, с помощью контактных колец и щеток можно замыкать обмотку ротора накоротко.

Для уменьшения износа щеток в ряде конструкций ротора двигателей имеются специальные щеткоподъемные приспособления. С помощью этих устройств по окончании пуска двигателя контактные кольца замыкаются накоротко, а щетки приподнимаются и не участвуют в работе.

Между ротором и статором асинхронного двигателя имеется воздушный зазор. При выборе воздушного зазора сталкиваются противоречивые тенденции. Минимальный (выбранный по механическим соображениям) воздушный зазор приводит к уменьшению тока холостого хода двигателя и увеличению коэффициента мощности.

Однако при малом воздушном зазоре увеличиваются добавочные потери в поверхностном слое статора и ротора, добавочные моменты и шум двигателя. Вследствие роста потерь уменьшается КПД.

Поэтому в современных сериях асинхронных двигателей воздушный зазор выбирается несколько большим, чем требуется по механическим соображениям (чтобы ротор при работе не задевал о статор).

Схемы соединения обмоток

В асинхронных трехфазных двигателях используются два способа соединения фаз обмоток между собой: в звезду и треугольник. Эти соединения могут выполняться как внутри машины — глухое соединение, так и вне двигателя — с помощью сменных перемычек на специальном щитке, установленном на корпусе машины.

В первом случае к выводному щитку подводятся три вывода, во втором — шесть выводов (начала и концы фаз). Внешнее соединение фаз наиболее удобно с точки зрения ее эксплуатации. В таком случае начала и концы фаз обмоток могут свободно отсоединяться при необходимости и подключаться к испытательной аппаратуре.

Питающее напряжение.

Асинхронные двигатели общего назначения обычно выпускаются для работы на двух напряжениях, например 127/220, 220/380 и 380/660 В.

При меньшем из каждых двух напряжений фазы двигателя соединяются в треугольник, а при большем — в звезду. При внешнем соединении фаз двигателя сравнительно просто можно подключить его к одному из указанных на щитке напряжений.

Некоторые электродвигатели выпускаются на одно напряжение, в этом случае фазы соединены в звезду.

Электротехнические материалы.

Для магнитопроводов (сердечников) статора и ротора асинхронных двигателей общего назначения широко применяются холоднокатаные низколегированные электротехнические стали. Они выпускаются в рулонах (лентах) нужной ширины, что позволило автоматизировать процесс штамповки листов и уменьшить отходы.

Для двигателей серии 4А мощностью до 15-20 кВт применяется холоднокатаная сталь марки 2013 (нелегированная), а для машин большей мощности — сталь марки 2212 (слаболегированная). Для двигателей старых серий (А, А2) применялась горячекатаная сталь марки 1211.

Применение холоднокатаных сталей позволило снизить расход стали на 10-15 и массу конструктивных деталей на 5-7% .

Изоляционные материалы применяются для изоляции токоведущих проводов, расположенных в одном пазу (друг от друга) — витковая изоляция, проводов разных фаз между собой — междуфазовая изоляция, проводов от заземленных сердечников — корпусная изоляция.

Толщина изоляции определяется рабочим напряжением двигателя, классом нагревостойкости изоляции, условиями эксплуатации двигателя. В зависимости от предельно допускаемой температуры изоляционные материалы подразделяются на классы нагревостойкости.

В свою очередь класс нагревостойкости изоляции (витковой, междуфазовой, корпусной) и пропиточных составов определяет допустимые превышения температуры для других частей двигателя в соответствии с ГОСТ 183-74.

В соответствии с ГОСТ 8865-70 изоляционные материалы разделены на семь классов нагревостойкости — У, А, Е, В, F, Н, С.

Для изоляции асинхронных двигателей общего назначения обычно применяются четыре класса Е, В, F, Н с допустимыми температурами изоляционного материала 120, 130, 155, 180 °С соответственно.

Обмоточные провода изготовляются с эмалевой, эмалево-волокнистой или волокнистой изоляцией. Толщина изоляционного слоя у проводов с эмалевой изоляцией в 1,5- 3 раза меньше, чем у проводов с волокнистой изоляцией; эмалевая изоляция, кроме того, лучше проводит тепло и является более влагостойкой.

Поэтому в двигателях современных серий применяются в основном провода с эмалевой изоляцией марок ПЭТВ, ПЭТВМ (класс нагревостойкости В) и ПЭТВ, ПЭТ 155 (класс F). Провода ПЭТВМ и ПЭТМ разработаны для механизированной укладки обмоток.

В двигателях напряжением 3 кВ и выше кроме указанных проводов применяются также провода со стекловолокнистой изоляцией марок ПСД и ПСДК. Диаметр изолированного провода при механизированной укладке всыпной обмотки не превышает 1,4-1,6 мм, при ручной укладке — до 1,8 мм.

Пазовая и междуфазовая изоляция

В современных сериях двигателей широкое распространение получили композиционные материалы, представляющие собой сочетание полимерных пленок с различными гибкими электроизоляционными материалами на основе синтетических органических или неорганических волокон, причем указанные компоненты связаны между собой клеящими составами. Пленка принимает на себя основную электрическую и механическую нагрузки, в то время как другие компоненты выполняют функции армирующего материала, обеспечивающего необходимые технологические свойства композиции — жесткость, упругость, повышенную стойкость к механическим воздействиям и др.

Одной из важных функций волокнистых подложек является обеспечение надежной связи между поверхностями пазовой изоляции и прилегающими к ним катушками обмотки и сердечником за счет лучшей смачиваемости волокнистых материалов пропиточными составами по сравнению с пленками.

Композиционные материалы обладают высокими механическими свойствами.

Широко используются пленкосинтокартоны марок ПСК-Ф, ПСК-ЛП, состоящие из полиэтилентерефталатной пленки марки ПЭТФ, оклеенной с двух сторон бумагой из фенилонового или лавсанового волокна.

Для прокладок в лобовых частях применяют материалы с повышенным коэффициентом трения, такие, как пленкослюдопласт и пленкослюдокартон. Пропиточные и покровные составы.

В двигателях современных серий широкое распространение нашли пропиточные составы без растворителей, что существенно уменьшило длительность процесса полимеризации, улучшило качество пропитки и теплопроводность изоляции.

Для пропитки асинхронных двигателей современных серий применяются составы без растворителей марок КП-34, КП-50, КП-103. ЭКД-14, а также лаки с растворителями марок МЛ-92, ПЭ-933, КО-916К, КО-964Н.

После пропитки и сушки на лобовую часть обмоток наносятся покровные составы для повышения стойкости обмотки к воздействию окружающей среды (пыль, масло, соляной туман, вредные примеси в воздухе и др.).

В качестве покровных составов применяют эмали ГФ92-ГС и ЭП91 (с растворителями) и компаунды КП-34, КП-50. Формы исполнения асинхронных двигателей определяются требованиями ГОСТ 2479-79 и разделяются на девять групп.

Асинхронные двигатели серии 4А основного исполнения имеют четыре основные формы: IM 1081 — на лапах с двумя подшипниковыми щитами с одним цилиндрическим концом вала; IM 2081 — то же, что и IM 1081, но с фланцем на подшипниковом щите; IM 3081 — без лап с двумя подшипниковыми щитами, фланцем на подшипниковом щите и одним цилиндрическим концом вала со стороны привода; IM 9081 — встраиваемое исполнение с цилиндрической станиной (или без станины) с двумя подшипниковыми щитами и одним цилиндрическим концом вала со стороны привода. Как видно, условное обозначение двигателя по форме исполнения и способу монтажа состоит из латинских букв IM и четырехзначного числового индекса, первая цифра которого (от 1 до 9) определяет конструктивное исполнение, вторая и третья (от 00 до 99) — способ монтажа, четвертая (от 0 до 9) — условное обозначение конца вала. По степени защиты персонала от соприкосновения с токоведущим или движущимися частями, находящимися внутри машины, и попадания твердых посторонних тел и воды внутрь машины также существуют различные формы исполнения. В соответствии с ГОСТ 17494-72 для защиты электрических машин могут применяться 15 исполнений от IP00 до IP56. Для асинхронных двигателей напряжением до 1 кВ приняты две основные степени защиты IP23 и IP44.

Для некоторых специальных исполнений двигателей, работающих в пыльных и влажных помещениях, могут быть приняты степени защиты IP54, IP56. Двигатели, работающие в закрытых помещениях, могут иметь степень защиты IP22.

Обозначение по способу защиты состоит из латинских букв IP и двух цифр, первая из которых (от О до 6) указывает на степень защиты персонала от соприкосновения и попадания посторонних предметов внутрь машины, а вторая (от 0 до 8) — на степень защиты от попадания воды: исполнение IP22 — защита двигателя от проникновения внутрь корпуса твердых тел диаметром более 12 мм и от капель воды, летящих под углом не более 15° к вертикали; исполнение IP44 — защита от твердых тел размером более 1 мм и от брызг, летящих в любом направлении; исполнение IP23 — то же, что и IP22, но с защитой от дождя (капли дождя под углом до 60° к вертикали).

Способ охлаждения двигателей регламентируется требованиями ГОСТ 20459-75.

Асинхронные двигатели общего назначения выпускаются с двумя способами охлаждения — с самовентиляцией (лопатки вентилятора расположены на роторе двигателя) типа IC01 и с наружным вентилятором, расположенным на валу двигателя, типа IC0141.

Обозначение способа охлаждения состоит из латинских букв , следующей за ними прописной буквы, обозначающей вид хладоагента (если охлаждение воздушное — эта буква опускается), и цифрового индекса, который указывает тип цепи для циркуляции хладоагента и способ его перемещения. В ряде модификаций двигателей применяются способы охлаждения IC0041 (естественное без вентилятора) и IC06 (охлаждение от пристроенного вентилятора, приводимого во вращение собственным двигателем).

Ротор асинхронного двигателя: устройство короткозамкнутого и фазного ротора

Внушительная мощность асинхронного электродвигателя, трансформирующего электричество в энергию вращения, создается не за счет каких-либо механических составляющих: для такого мощного вращения в его «начинке» используются только электромагниты.

Ротор асинхронного двигателя: конструкция

Ротор – вращающийся внутри статора (неподвижного компонента) элемент электродвигателя, вал которого соединен с деталями рабочих агрегатов, например, пил, турбин и помп. Шихтованный сердечник выполняется из отдельных пластин электротехнической стали с полузакрытыми или открытыми пазами.

Массивный ротор представляет собой цельный стальной цилиндр, помещенный внутрь статора, с напресованным на его поверхность сердечником.

Бесконтактная, не соединенная ни с какой внешней электрической цепью обмотка ротора, создает вращательный момент и бывает двух типов:

  • короткозамкнутая (короткозамкнутый ротор);
  • фазная (фазный ротор).

Короткозамкнутый ротор

Впаянные или залитые в поверхность сердечника и накоротко замкнутые с торцов двумя кольцами высокопроводящие медные (для машин большой мощности) или алюминиевые стержни (для машин меньшей мощности), играют роль электромагнитов с полюсами, обращенными к статору. Такая конструкция носит название «беличья клетка», данное ей русским электротехником М. О. Доливо-Добровольским.

Стержни обмотки не имеют какой-либо изоляции, так как напряжение в такой обмотке нулевое.

Более часто используемый для стержней двигателей средней мощности, легко плавящийся алюминий, отличается малой плотностью и высокой электропроводностью.

Для уменьшения высших гармоник электродвижущей силы (ЭДС) и исключения пульсации магнитного поля, стержни ротора имеют определенным образом рассчитанный угол наклона относительно оси вращения.

В двигателях малой мощности пазы сердечника, как правило, выполняют закрытыми: отделяющая ротор от воздушного зазора — стальная пластина позволяет дополнительно закрепить обмотки, но за счет некоторого увеличения их индуктивного сопротивления.

Фазный ротор

Характеризуется практически не отличающейся от обмотки статора трехфазной (в более общем случае — многофазной) уложенной в пазы сердечника обмоткой, концы которой соединены по схеме «звезда».

Выводы обмоток присоединены к закрепленным на валу ротора контактным кольцам, к которым при пуске двигателя прижимаются и скользят неподвижные, соединенные с реостатом графитовые или металлографитовые щетки.

Для ограничения возникающих вихревых токов обычно бывает достаточно нанесенной на поверхность обмоток оксидной пленки, вместо изолирующих лаков.

Добавленный в цепь обмотки ротора трехфазный пусковой или регулировочный резистор, позволяет изменять активное сопротивление роторной цепи, способствуя уменьшению больших пусковых токов. Могут использоваться реостаты:

  • металлические проволочные или ступенчатые – с ручным или автоматическим переключением с одной ступени сопротивления на другую;
  • жидкостные, сопротивление которых регулируется глубиной погружения в электролит электродов.

Для увеличения долговечности щеток, некоторые модели фазных роторов оборудуются специальным короткозамкнутым механизмом, поднимающим после пуска двигателя щетки и замыкающим кольца.

Асинхронные двигатели с фазным ротором характеризуются более сложной конструкцией, чем с короткозамкнутым, но, в то же время, более оптимальными пусковыми и регулировочными характеристиками.

Принцип работы

Электромагниты статора расположены близко к стержням ротора и передают на них электричество для его вращения.

Индуцированное в роторе магнитное поле будет следовать за магнитным полем статора, осуществляя, при этом, механическое вращение роторного вала и связанных с ним агрегатов.

При этом, созданная катушками статора электромагнитная индукция, выталкивает ток на стержнях строго от себя. Значение тока в стержнях изменяется со временем.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]