Тиристорный регулятор напряжения принцип работы

В электротехнике довольно часто приходиться встречаться с задачами регулирования переменного напряжения, тока или мощности.

Например, для регулирования частоты вращения вала коллекторного двигателя необходимо регулировать напряжение на его зажимах, для управления температурой внутри сушильной камеры нужно регулировать мощность, выделяемую в нагревательных элементах, для достижения плавного безударного пуска асинхронного двигателя – ограничивать его пусковой ток. Распространенным решением является устройство, называемое тиристорный регулятор.

Устройство и принцип действия однофазного тиристорного регулятора напряжения

Тиристорные регуляторы бывают однофазные и трехфазные соответственно для однофазных и трехфазных сетей и нагрузок. В этой статье мы рассмотрим простейший однофазный тиристорный регулятор, трехфазные – в других статьях. Итак, на рисунке 1 ниже представлен однофазный тиристорный регулятор напряжения:

Рисунок 1 Простой однофазный тиристорный регулятор с активной нагрузкой

Сам тиристорный регулятор обведен голубыми линиями и включает в себя тиристоры VS1-VS2 и систему импульсно-фазового управления (далее – СИФУ).

Тиристоры VS1-VS2 – полупроводниковые приборы, имеющие свойство быть закрытыми для протекания тока в нормальном состоянии и быть открытыми для протекания тока одной полярности при подаче напряжения управления на его управляющий электрод.

Поэтому для работы в сетях переменного тока необходимо два тиристора, включенных разнонаправлено – один для протекания положительной полуволны тока, второй – отрицательной полуволны. Такое включение тиристоров называется встречно-параллельным.

Однофазный тиристорный регулятор с активной нагрузкой

Работает тиристорный регулятор так. В начальный момент времени подается напряжение L-N (фаза и ноль в нашем примере), при этом импульсы управляющего напряжения на тиристоры не подаются, тиристоры закрыты, ток в нагрузке Rн отсутствует. После получения команды на запуск СИФУ начинает формировать импульсы управления по определенному алгоритму (см.рис. 2). 

Рисунок 2 Диаграмма напряжения и тока в активной нагрузке

Сначала система управления синхронизируется с сетью, то есть определяет момент времени, в который напряжение сети L-N равно нулю. Эта точка называется моментом перехода через ноль (в иностранной литературе – Zero Cross).

 Далее отсчитывается определенное время T1 от момента перехода через ноль и подается импульс управления на тиристор VS1. При этом тиристор VS1 открывается и через нагрузку протекает ток по пути L-VS1-Rн-N.

При достижении следующего перехода через ноль тиристор автоматически закрывается, так как не может проводить ток в обратном направлении. Далее начинается отрицательный полупериод сетевого напряжения.

СИФУ снова отсчитывает время Т1 относительно уже нового момента перехода напряжения через ноль и формирует второй импульс управления уже тиристором VS2, который открывается, и через нагрузку протекает ток по пути N-Rн-VS2-L. Такой способ регулирования напряжения называется фазо-импульсный.

Время Т1 называется временем задержки отпирания тиристоров, время Т2 – время проводимости тиристоров.

Изменяя время задержки отпирания T1 можно регулировать величину выходного напряжения от нуля (импульсы не подаются, тиристоры закрыты) до полного сетевого, если импульсы подаются сразу в момент перехода через ноль. Время задержки отпирания T1 варьируется в пределах 0..

10 мс (10 мс – это длительность одного полупериода напряжения стандартной сети 50 Гц). Также иногда говорят о временах T1 и Т2, но оперируют при этом не временем, а электрическими градусами. Один полупериод составляет 180 эл.градусов.

Что представляет выходное напряжение тиристорного регулятора? Как видно из рисунка 2, оно напоминает  «обрезки» синусоиды. Причем чем больше время Т1, тем меньше этот „обрезок“ напоминает синусоиду. Из этого следует важный практический вывод – при фазо-импульсном регулировании выходного напряжение несинусоидально.

Это обуславливает ограничение области применения — тиристорный регулятор не может быть применен для нагрузок, не допускающих питание несинусоидальным напряжением и током. Так же на рисунке 2 красным цветом показана диаграмма тока в нагрузке.

Поскольку нагрузка чисто активная, то форма тока повторяет форму напряжения в соответствии с законом Ома I=U/R.

Случай активной нагрузки является наиболее распространенным. Одно из самых частых применений тиристорного регулятора – регулирование напряжения в ТЭНах. Регулируя напряжение, изменяется ток и выделяемая в нагрузке мощность.

Поэтому иногда такой регулятор также называют тиристорным регулятором мощности.

Это верно, но все-таки более верное название – тиристорный регулятор напряжения, так как именно напряжение регулируется в первую очередь, а ток и мощность – это величины уже производные. 

Регулирование напряжения и тока в активно-индуктивной нагрузке

Мы рассмотрели простейший случай активной нагрузки. Зададимся вопросом, что изменится, если нагрузка будет иметь помимо активной еще и индуктивную составляющую? Например, активное сопротивление подключено через понижающий трансформатор (рис.3). Это кстати очень распространенный случай.

Рисунок 3 Тиристорный регулятор работает на RL-нагрузку

Посмотрим внимательно на рисунок 2 из случая чисто активной нагрузки.

На нем видно, что сразу после включения тиристора ток в нагрузке почти мгновенно нарастает от нуля до своего предельного значения, обусловленного текущим значением напряжения и сопротивления нагрузки.

 Из курса электротехники известно, что индуктивность препятствует такому скачкообразному нарастанию тока, поэтому диаграмма напряжения и тока будет иметь несколько отличный характер:

Рисунок 4 Диаграмма напряжения и тока для RL-нагрузки

После включения тиристора ток в нагрузке нарастает постепенно, благодаря чему кривая тока сглаживается. Чем больше индуктивность, тем более сглаженная кривая тока. Что это дает практически?

  • Наличие достаточной индуктивности позволяет приблизить форму тока к синусоидальной, то есть индуктивность выполняет роль синус фильтра. В данном случае это наличие индуктивности обусловлено свойствами трансформатора, но часто индуктивность вводят преднамеренно в виде дросселя.
  • Наличие индуктивности уменьшает величину помех, распространяемых тиристорным регулятором по проводам и в радиоэфир. Резкое, почти мгновенное (в течение нескольких микросекунд) нарастание тока вызывает помехи которые могут препятствовать нормальной работе другого оборудования. А если питающая сеть «слабая», то бывает и совсем курьез – тиристорный регулятор может „глушить“ сам себя своими же помехами.
  • У тиристоров есть важный параметр – величина критической скорости нарастания тока di/dt. Например, для тиристорного модуля SKKT162 эта величина составляет 200 А/мкс. Превышение этой величины опасно, так как может привести к выходу тиристору из строя. Так вот наличие индуктивности дает возможность тиристору остаться в области безопасной работы, гарантированно не превысив предельную величину di/dt. Если же это условие не выполняется, то может наблюдаться интересное явление – выход тиристоров из строя, притом что ток тиристоров не превышает их номинального значения. Например, тот же SKKT162 может выходить из строя при токе в 100 А, хотя он может нормально работать до 200 А. Причиной будет превышение именно скорости нарастания тока di/dt.

Кстати, надо оговориться, что индуктивность в сети есть всегда, даже если нагрузка носит чисто активный характер.

Ее наличие обусловлено, во-первых, индуктивностью обмоток питающей трансформаторной подстанции, во вторых, собственной индуктивностью проводов и кабелей и, в третьих, индуктивностью петли, образованной питающими и нагрузочными проводами и кабелями.

И чаще всего этой индуктивности хватает, чтобы обеспечить условие непревышения di/dt критического значения, поэтому производители обычно не ставят в тиристорные регуляторы дроссели, предлагая их как опцию тем, кого беспокоит «чистота» сети и электромагнитная совместимость устройств к ней подключенных.

Также обратим внимание диаграмму напряжения на рисунке 4. На ней также видно, что после перехода через ноль на нагрузке появляется небольшой выброс напряжения обратной полярности.

 Причина его возникновения – затягивание спадания тока в нагрузке индуктивностью, благодаря чему тиристор продолжает быть открытым даже при отрицательной полуволне напряжения.

Запирание тиристора происходит при спадания тока до нуля с некоторым запаздыванием относительно момента перехода через ноль.

Случай индуктивной нагрузки

Что будет если индуктивная составляющая много больше составляющей активной? Тогда можно говорить о случае чисто индуктивной нагрузки. Например, такой случай можно получить, отключив нагрузку с выхода трансформатора из предыдущего примера:

  • Рисунок 5 Тиристор регулятор с индуктивной нагрузкой
  • Трансформатор, работающий в режиме холостого хода – почти идеальная индуктивная нагрузка. В этом случае из-за большой индуктивности момент запирания тиристоров смещается ближе к середине полупериода, а форма кривой тока максимально сглаживается до почти синусоидальной формы:
  • Рисунок 6 Диаграммы тока и напряжение для случая индуктивной нагрузки

При этом напряжение на нагрузке почти равно полному сетевому, хотя время задержки отпирания составляет всего половину полупериода (90 эл.градусов) То есть при большой индуктивности можно говорить о смещении регулировочной характеристики. При активной нагрузке максимальное выходное напряжение будет при угле задержки отпирания 0 эл.

градусов, то есть в момент перехода через ноль. При индуктивной нагрузке максимум напряжения можно получить при угле задержки отпирания 90 эл.градусов, то есть при отпирании тиристора в момент максимума сетевого напряжения.

Соответственно, случаю активно-индуктивной нагрузки максимум выходного напряжения соответствует углу задержки отпирания в промежуточном диапазоне 0..90 эл.градусов.

Тиристорный регулятор мощности

В современных радиолюбительских схемах широкое распространение получили различные виды деталей, в том числе и тиристорный регулятор мощности.

Чаще всего эта деталь используется в паяльниках на 25-40 ватт, которые в обычных условиях легко перегреваются и становятся непригодными к работе.

Эта проблема легко решается с помощью регулятора мощности, позволяющего выставлять точную температуру.

Применение тиристорных регуляторов

Как правило, тиристорные регуляторы мощности применяются для улучшения рабочих свойств обычных паяльников. Современные конструкции, оснащенные множеством функций, отличаются высокой стоимостью, а их использование будет неэффективным при небольших объемах паяльных работ.

Поэтому, более целесообразным будет оборудование обычного паяльника тиристорным регулятором. Регулятор мощности на тиристоре широко применяется в системах регулировки яркости светильников. На практике они представляют собой обычные настенные выключатели с вращающейся ручкой-регулятором. Однако такие приспособления способны нормально работать лишь с обычными лампами накаливания. Они совершенно не воспринимаются современными компактными люминесцентными лампами, из-за расположенного внутри них выпрямительного моста с электролитическим конденсатором. Тиристор просто не будет работать во взаимодействии с этой схемой.

Такие же непредсказуемые результаты получаются и при попытках отрегулировать яркость светодиодных ламп. Поэтому для регулируемого источника освещения наиболее оптимальным вариантом будет использование обычных ламп накаливания.

Существуют и другие области применения тиристорных регуляторов мощности. Среди них следует отметить возможность регулировки ручного электроинструмента. Регулирующие устройства устанавливаются внутри корпусов и позволяют изменять количество оборотов дрели, шуруповерта, перфоратора и прочего инструмента.

Принцип работы тиристора

Действие регуляторов мощности тесно связано с принципом работы тиристора. На радиосхемах он обозначается значком, напоминающим обычный диод. Каждому тиристору свойственна односторонняя проводимость и, соответственно, способность к выпрямлению переменного тока.

Участие в этом процессе становится возможным при условии подачи к управляющему электроду положительного напряжения. Сам управляющий электрод располагается со стороны катода. В связи с этим, тиристор ранее носил название управляемого диода.

До подачи управляющего импульса, тиристор будет закрытым в любом направлении.

Маркировка резисторов по цвету

Для того чтобы визуально определить исправность тиристора, его включают в общую цепь со светодиодом через источник постоянного напряжения в 9 вольт.

Дополнительно вместе со светодиодом подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя подается к управляющему электроду тиристора.

В результате, тиристор открывается и светодиод начинает излучать свет.

При отпускании кнопки, когда она перестает удерживаться в нажатом положении, свечение должно продолжаться.

В случае повторного или неоднократного нажатия кнопки ничего не изменится – светодиод все так же будет светить с одинаковой яркостью. Это свидетельствует об открытом состоянии тиристора и его технической исправности.

Он будет находиться в открытом положении до того момента, пока подобное состояние не прервется под влиянием внешних воздействий.

В некоторых случаях могут быть исключения. То есть при нажатии кнопки светодиод загорается, а при отпускании кнопки – он гаснет. Такая ситуация становится возможной из-за тока, проходящего через светодиод, значение которого меньше по сравнению с током удержания тиристора.

Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого ток удержания будет меньше.

Параметр тока удержания у различных тиристоров может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.

Схема простейшего регулятора мощности

Тиристор участвует в выпрямлении переменного напряжения так же, как и обыкновенный диод. Это приводит к однополупериодному выпрямлению в незначительных пределах с участием одного тиристора.

Читайте также:  Труборез для пластиковых труб своими руками

Для достижения желаемого результата, с помощью регуляторов мощности осуществляется управление двумя полупериодами напряжения сети. Это становится возможным благодаря встречно-параллельному включению тиристоров.

Кроме того, тиристоры могут включаться в цепь диагонали выпрямительного моста.

Какое соединение проводников называется параллельным

Простейшую схему тиристорного регулятора мощности лучше всего рассматривать на примере регулировки мощности паяльника. Нет смысла начинать регулировку прямо с нулевой отметки. В связи с этим регулировать можно только один полупериод положительного сетевого напряжения. Прохождение отрицательного полупериода осуществляется через диод, без каких-либо изменений, непосредственно к паяльнику, обеспечивая его половинную мощность.

Прохождение положительного полупериода происходит через тиристор, за счет чего и выполняется регулировка. В цепи управления тиристором присутствуют простейшие элементы в виде резисторов и конденсатора. Зарядка конденсатора происходит от верхнего провода схемы, через резисторы и конденсатор, нагрузку и нижний провод схемы.

Управляющий электрод тиристора соединяется с плюсовым выводом конденсатора. Когда на конденсаторе напряжение возрастает до значения, позволяющего включать тиристор, происходит его открытие. В результате, в нагрузку пропускается какая-то часть положительного полупериода напряжения. Одновременно наступает разрядка конденсатора и подготовка к следующему циклу.

Для регулировки скорости заряда конденсатора используется переменный резистор. Чем быстрее произойдет зарядка конденсатора до значения напряжения, при котором открывается тиристор, тем раньше наступит открытие тиристора.

Следовательно, в нагрузку поступит большее количество положительного полупериода напряжения.

Данная схема, в которой используется тиристорный регулятор мощности, служит основой для других схем, применяющихся в различных областях.

Тиристорный регулятор мощности своими руками

Тиристорный регулятор мощности — устройство, области применения, преимущества

Тиристорный регулятор — специальное устройство, которое позволяет осуществлять регулировку и контроль мощности электрической энергии. Применение этого прибора помогает поддерживать необходимое значение электрического тока, которое требуется для достижения заданного уровня мощности и напряжения в оборудовании.

Содержание:

С какими еще задачами справляется регулятор мощности?

Наряду с функцией управления нагрузкой на различные приборы устройство выполняет следующие задачи:

  • Предотвращение перенапряжения, перегрева техники в процессе эксплуатации.
  • Контроль работы тиристоров.
  • Безударный, мягкий запуск оборудования.

Устройство тиристорного регулятора мощности

Тиристор представляет собой управляемый полупроводниковый прибор, посредством которого электроток проводится в одном направлении. Он имеет три вывода: анод, катод и управляющий электрод.

Для прохождения электротока через тиристор важно соблюсти ряд требований. Прибор анодом и катодом должен быть подключен к силовой цепи, а на управляющий электрод- поступать напряжение из цепи управления.

Какие бывают регуляторы мощности?

Различают следующие разновидности таких устройств:

  • Фазовые. Регуляторы мощности этого типа могут использоваться для индуктивной или переменной резистивной нагрузки. В процессе работы данные приборы регулируют напряжение на выходе прибора.
  • Циклические. Подобные регуляторы мощности используются для постоянной резистивной или емкостной нагрузки. Они коммутируют ток нагрузки при переходе через ноль.

Как работает тиристорный регулятор мощности?

В зависимости от вида такие приборы функционируют по-разному. Алгоритм работы регуляторов мощности основывается на методе переключения тиристоров и может быть двух типов:

  • Фазовый. Данный метод зависит от времени и степени открытия тиристоров. Чем дольше они открываются с момента подачи сигнала на управляющий электрод, тем более низкая мощность поступает к оборудованию.
  • Циклический. В основе этого метода лежит принцип включения и выключения тиристоров при переходе сигнала через ноль. На уровень мощности в данном случае оказывает влияние число полупериодов, в течение которых тиристоры оказываются в выключенном положении.

Где используются регуляторы мощности?

Такие устройства имеют широкую область применения. Использование данного оборудования оправданно, если речь идет о поддержании определенных температурных показателей в процессе работы разных типов печей (сушильных, для обжига и проч.), электрических нагревателей и другого аналогичного оборудования. Регуляторы мощности также позволяют контролировать уровень напряжения электроламп.

Такое оборудование применяется в следующих отраслях:

  • нефтегазовая промышленность;
  • производство товаров из пластика;
  • изготовление стеклянно-керамической продукции;
  • производство лакокрасочных изделий;
  • целлюлозно-бумажная, металлургическая промышленность и другие.

Тиристорные регуляторы мощности: основные преимущества

Одними из ключевых достоинств этого оборудования являются простая конструкция и надежная работа. При этом многообразие модификаций таких приборов позволяет подобрать оптимальное решение, которое будет в полной мере соответствовать установленным технологическим требованиям.

Среди других достоинств такого оборудования стоит выделить следующие:

  • Повышенная точность поддержания определенных температурных показателей.
  • Достаточно простой алгоритм функционирования.
  • Отсутствие механических контактов.
  • Наличие функции непрерывного регулирования.
  • Сравнительно небольшие габариты.

Схема тиристорного регулятора

В качестве примера рассмотрим достаточно простую схему регулировки мощности обычного паяльника. В описываемом случае регулируется один полупериод положительного напряжения сети. Отрицательный полупериод проходит к паяльнику через диод. При этом он остается практически в неизменном виде. Положительный полупериод проходит через тиристор, благодаря чему осуществляется процесс регулирования.

Система управления тиристором включает также резисторы и конденсатор. Управляющий электрод тиристора соединяется с плюсовым выводом конденсатора. При увеличении уровня напряжения и достижении им определенной отметки осуществляется его открытие.

Вследствие этого в нагрузку попадает определенная часть положительного полупериода напряжения. При этом конденсатор разряжается и готовится вступить в следующий цикл. Регулировать скоростные показатели заряда конденсатора позволяет переменный резистор.

Чем более оперативно зарядится конденсатор, тем быстрее откроется тиристор.

Компания «ОвенКомплектАвтоматика» предлагает заказать однофазные тиристорные регуляторы мощности разных модификаций. Мы работаем только с сертифицированным оборудованием, которое в полной мере соответствует установленным стандартам качества, надежности и безопасности.

Однофазные регуляторы мощности и другие приборы, которые представлены на сайте компании «ОвенКомплектАвтоматика», подвергаются обязательному тестированию перед поступлением в продажу. Благодаря такому подходу наша организация заручилась доверием заказчиков. В настоящее время оборудование, которое мы реализуем, активно используется по всей России.

Заказывать продукцию у нас удобно и выгодно. Наша компания сотрудничает с производителями реализуемого оборудования напрямую, т. е. минуя сторонних исполнителей.

Это позволяет нам исключать высокие торговые наценки и устанавливать выгодную стоимость на весь ассортимент. Также наши заказчики могут рассчитывать на дополнительные бонусы в виде скидок.

Они предоставляются при оптовом заказе и постоянном сотрудничестве.

В компании «ОвенКомплектАвтоматика» действует услуга доставки продукции. Мы привезем оборудование абсолютно бесплатно в любую точку столицы (при заказе изделий общей стоимостью свыше 35 000 рублей) и области (если итоговая сумма чека составит не менее 100 000 рублей). Также мы предлагаем своим клиентам услуги гарантийного и послегарантийного обслуживания приборов.

Вы хотите узнать больше об особенностях однофазных тиристорных регуляторов мощности? Наши специалисты предоставят профессиональную консультацию. Обращайтесь по указанному на странице номеру. Заказать приборы можно в онлайн-режиме на нашем сайте.

31.10.2017

Устройство и принцип действия тиристорного регулятора

  • 7 июня 2013 г. в 10:48
  • 3129

Тиристорный регулятор — устройство предназначено для изменения действующего напряжения, мощности или тока в нагрузке. Эти изделия широко применяются на производстве в самых разных секторах экономики: металлургии, химической и пищевой промышленности и др.

Тиристорный регулятор состоит из двух частей — силовой и управляющая.

Силовая часть — это пара встречно-параллельных тиристоров( иногда симисторов) включенных в разрыв между фазой и нагрузкой. Если тиристорных регулятор — трехфазный, то соответственно, таких пар — три на каждую фазу.

В современных регуляторах используются как правило тиристоры модульного типа — они наиболее технологичны в производстве и ремонте и небольшие по габаритам.

В более «древних» устройствах можно обнаружить тиристоры таблеточного или штырьевого типа.

Управляющая часть — очень похожа на систему управления  управляемого выпрямителя напряжения — это собственно платы, которые управляют тиристорами. Как правило, все современные платы идут с микропроцессором. У каждого тиристорного регулятора имеется система синхронизации с питающей сетью.

Она необходима для математических вычислений — ведь чтобы корректно управлять тиристорами, микропроцессору необходимо в нужный момент времени подавать на тиристор управляющий сигнал, а чтобы это делать правильно ему( процессору) нужно рассчитывать время задержки отпирания относительно начала периода сетевого напряжения.

Теперь поговорим немного о принципе действия. Тиристорный регулятор может работать в одном из двух режимов — фазо-импульсный, либо режим пропуска периодов( релейный).

При фазо-импульсном способе выходное напряжение изменяется за счет изменения интервала проводимости тиристора в пределах периода сетевого напряжения.

То есть при этом способе регулирования тиристоры включаются и выключаются 100 раз в секунду — каждый полупериод.

Такой способ позволяет регулировать напряжение непрерывно и точно, что важно для малоинерционных нагрузок, которые быстро нагреваются и остывают.

Тиристорный регулятор ТРМ. Производитель — ООО «Звезда-Электроника»

Метод пропуска периодов заключается в том, что тиристоры некоторое целое число периодов включены, а затем опять же на некоторое число периодов выключаются. При этом есть пауза в питании нагрузки, что не всегда бывает приемлимо.

Однако, у этого способа есть очень положительная черта – тиристорный регулятор при этом практически не создает помех в сети, поскольку коммутация( включение) тиристоров осуществляется в момент перехода напряжения через ноль, то есть форма тока нагрузки не искажается и остается синусоидальной.

ООО «Звезда-Электроника»

Тиристорный регулятор как средство экономии энергии в нагревательных системах

Компания «Энергис» (г. Киров) основана в 1990 году и более 14 лет является дилером компании ОВЕН.

За годы работы «Энергис» развился в многопрофильное инжиниринговое предприятие, которое занимается разработкой и внедрением автоматизированных систем управления технологическими процессами различных отраслей промышленности и ЖКХ на базе компонентов автоматизации ОВЕН. Одной из успешных технических разработок фирмы являются тиристорные регуляторы напряжения, которые выпускаются с 1998 года.

Актуальность разработки тиристорных регуляторов

Оборудование, напрямую преобразующее электрическую энергию в тепло, имеется практически во всех отраслях народного хозяйства – электропечи пищевых предприятий, электрокотлы в жилищно-коммунальном хозяйстве, электротермические установки в различных отраслях промышленности. Несмотря на повышение стоимости энергии, эффективность использования энергоресурсов в России до сих пор остается недопустимо низкой. Поэтому ограничение мощности, потребляемой электрооборудованием — первостепенная задача практического энергосбережения.

Невозможно качественно решить задачу управления мощностью, применяя так называемое «релейное» регулирование, имеющее на предприятиях определенное распространение.

Релейный принцип регулирования нагрузки содержит известные «издержки» — невысокая точность установки уровня включения/выключения, переходные процессы в электрических цепях и колебания напряжения, высокие эксплуатационные затраты на обслуживание релейно-контакторных схем.

Кроме того, современные технологические процессы на предприятиях требуют высокой точности регулирования, то есть непрерывного регулирования в привязке к параметрам технологических процессов и в реальном масштабе времени.

Любое электрооборудование имеет максимальный ресурс (срок эксплуатации) только при условии ограничения отклонений (колебаний) напряжения питающей сети в допустимых пределах.

Таким образом, для эффективного управления электрической нагрузкой следует применять непрерывные законы регулирования, воплощенные в бесконтактных устройствах – тиристорных регуляторах напряжения (ТРН).

Основными требованиями при разработке оборудования стали необходимость иметь гибкую конфигурацию, применимость для решения различных задач регулирования и ограничения электрической нагрузки питающей сети, а также обеспечение требуемой точности поддержания физического параметра (например, температуры).

В ТРН реализованы два метода управления тиристорами – фазоимпульсный и числоимпульсный.

Читайте также:  Зарядное устройство вза 5 схема

Функциональные особенности

Разработанный ТРН предназначен для плавного регулирования действующего напряжения на активной нагрузке вручную или дистанционно (автоматически) в стандартной сети напряжением 220/380 В с частотой 50 Гц.

Основная область применения – управление нагревательными установками различного назначения, а также осветительными установками с лампами накаливания.

ТРН обеспечивает плавное регулирование напряжения в каждой фазе раздельно (или совместно) в % от номинального входного напряжения. Эта функция реализуется вручную кнопками или поворотной ручкой на панели управления ТРН или дистанционно.

Принцип работы регулятора ТРН основан на изменении угла отпирания силовых тиристоров, величина которого определяется в зависимости от величины внешнего управляющего сигнала (4…20 мА), подаваемого на вход ТРН.

На объектах с электронагрузками без рабочей нейтрали ТРН отслеживает отклонения напряжения в фазах питающей сети и уравнивает работу нагрузки в фазах. Таким образом представлен не только регулятор угла отпирания силовых тиристоров, а также следящая система уравновешивания в любой промышленной трехфазной сети.

Преимущества применения ТРН основаны на конструктивных особенностях изделия:

  • блочно-модульная схема ТРН доступна при наладке и обслуживании и более того, допускает замену блоков без дополнительной регулировки;
  • защита настроек ТРН исключает последствия вмешательства или несанкционированного отключения сети;
  • дистанционное управление ТРН допускает раздельное регулирование в фазах (группы нагревателей, линии освещения и т.д.);
  • пуско-наладочные работы с ТРН доступны электромонтеру средней квалификации, выполняющему требования Правил техники безопасности в электроустановках до 1000 В.
  • два метода управления тиристорами – фазоимпульсный и числоимпульсный;
  • возможность встраивания в действующие на предприятиях системы автоматизации с использованием RS-232, RS-485, поддерживает протокол ModBus;
  • возможность работы в «грязных» питающих электросетях, где качество электроэнергии не соответствует нормам ГОСТ 13109-97;
  • применение металлических шкафов с различной степенью защиты (IP).

Изначально – на стадии разработки ТРН – в качестве ПИД-регулятора применялся ОВЕН ТРМ10-Pic, который зарекомендовал себя как надежный и недорогой прибор с необходимым набором функций. В последствии, по мере расширения и модернизации линейки приборов ОВЕН, в ТРН стали применять более современные регуляторы — ТРМ101, ТРМ151.

Перспективным, на наш взгляд, решением стала разработка прибора ТРМ251, который благодаря своей функциональности, простоте и удобным пользовательским интерфейсом, удачно вписался в ТРН в качестве программного ПИД-регулятора и задатчика температуры.

Сейчас при производстве ТРН мы применяем практически весь спектр ПИД-регуляторов ОВЕН, в том числе ТРМ148, ТРМ210. Эти приборы отличаются современным алгоритмом автонастройки, что немаловажно для предприятий – конечных потребителей, испытывающих нехватку квалифицированного эксплуатационного персонала.

Конкретный тип прибора ОВЕН определяется технической задачей, которую должен решать ТРН на предприятии заказчика.

Проведя мониторинг модификаций ТРН, изготовленных за 12 лет по различным техническим требованиям заказчиков, и на основе маркетингового анализа рынка, мы остановились на производстве ТРН (одно- и трехфазных) со следующими опциями:

  • плавное регулирование напряжения на активной нагрузке;
  • автоматическое поддержание заданной температуры (ПИД-регулирование) в одно- и многозонных электрических печах;
  • стабилизация выходного напряжения;
  • мониторинг электрических параметров нагрузки и её защитное отключение (встроенный монитор нагрузки);
  • мониторинг технологических параметров нагрузки (температура, состояние, время и т.п.) и их архивация на компьютере.

Схема последней модификации ТРН включает в себя ПИД-регуляторы (ОВЕН ТРМ10, ТРМ101, ТРМ151, ТРМ148 или ТРМ251), преобразователь интерфейса ОВЕН АС3-М, SCADA-систему OWEN PROCESS MANAGER, модуль МСД-100, термопары ОВЕН ДТПК (ТХА). Конкретная модификация ТРН с необходимыми опциями определяется при заполнении опросного листа.

Практическое применение ТРН

Практическое применение разработанные регуляторы напряжения ТРН нашли на разных предприятиях России. На предприятии «Аврора-ЭЛМА» (г. Волгоград) для производства пъезокерамических элементов применяются электропечи с особыми характеристиками. Особенность этих печей состоит в применяемых нагревательных элементах полупроводникового типа.

Для управления температурой при запуске необходимо глубокое регулирование напряжения на нагревательном элементе. Для этих целей был применено 15 регуляторов ТРН с максимальным током 160 А, управляемые дистанционно от ШИМ регулятора.

Применение данной системы позволило исключить сверхвысокие пусковые токи электропечи и обеспечить следящий режим регулирования температуры рабочей зоны.

В химическом производстве, производстве полимеров ТРН обычно применяются для точного регулирования тепловых характеристик компонентов и готовой продукции, как например, это реализовано на предприятии ОАО «КОМИТЭКС» (Республика Коми) при производстве полимерных строительных материалов и линолеумов.

Для строительства и горной промышленности применяются специальные ЩУВ-ТРН. Это регулятор для управления интенсивностью вибромашин, необходимых для автоматизации узлов сортировки и разгрузки ГОКов, а также для уплотнения и усадки бетонных смесей при производстве строительных элементов.

На базе имеющейся системы регулирования оптотиристорами была реализована схема с однополупериодным регулированием и силовым сглаживающим дросселем. Отличительной особенностью является индуктивный характер нагрузки на вибромашине.

Регулятор ЩУВ-ТРН обеспечивает надежную устойчивость режимов регулирования при эксплуатации на объекте.

В целом на предприятиях России, Южной Осетии, Казахстана, Узбекистана установлено более 1500 регуляторов ТРН различных мощностей и модификаций.

Применение описанных тиристорных регуляторов напряжения позволяет отказаться от громоздких релейно-контакторных схем управления, сократить время простоя оборудования из-за поломок, увеличить производительность и повысить качество выпускаемой продукции.

Устройство и принцип действия тиристорного регулятора

Тиристорный регулятор – устройство предназначено для изменения действующего напряжения, мощности или тока в нагрузке. Эти изделия широко применяются на производстве в самых разных секторах экономики: металлургии, химической  и пищевой промышленности и др.

Тиристорный регулятор состоит из двух частей – силовой и управляющая.

Силовая часть – это пара  встречно-параллельных тиристоров( иногда симисторов)  включенных в разрыв между фазой и нагрузкой. Если тиристорных регулятор – трехфазный, то соответственно, таких пар – три на каждую фазу.

  В современных регуляторах используются как правило тиристоры модульного типа – они наиболее технологичны в производстве и ремонте и небольшие по габаритам.

В более “древних” устройствах можно обнаружить тиристоры таблеточного или штырьевого типа. 

Управляющая часть – очень похожа на систему управления  управляемого выпрямителя — это собственно платы, которые управляют тиристорами. Как правило, все современные платы идут с микропроцессором. У каждого тиристорного регулятора имеется система синхронизации с питающей сетью.

Она необходима для математических  вычислений – ведь чтобы корректно управлять тиристорами, микропроцессору необходимо в нужный момент времени подавать на тиристор управляющий сигнал, а чтобы это делать правильно ему( процессору) нужно рассчитывать время задержки отпирания относительно начала периода сетевого напряжения. 

Теперь поговорим немного о принципе действия. Тиристорный регулятор может работать в одном из двух режимов – фазо-импульсный либо режим пропуска периодов( релейный).

При фазо-импульсном способе выходное напряжение изменяется за счет изменения интервала проводимости тиристора в пределах периода сетевого напряжения.

То есть при этом способе регулирования тиристоры включаются и выключаются 100 раз в секунду – каждый полупериод.

Такой способ позволяет регулировать напряжение непрерывно и точно, что важно для малоинерционных нагрузок, которые быстро нагреваются и остывают.

Метод пропуска периодов заключается в том, что тиристоры некоторое целое число периодов включены, а затем опять же на некоторое число периодов выключаются. При этом есть пауза в питании нагрузки, что не всегда бывает приемлимо.

Однако, у этого способа есть очень положительная черта – тиристорный регулятор мощности при этом практически не создает помех в сети, поскольку коммутация( включение) тиристоров осуществляется в момент перехода напряжения через  ноль, то есть форма тока нагрузки не искажается и остается синусоидальной.

Тиристорный регулятор напряжения своими руками: конструктивные особенности

Тиристорные регуляторы мощности применяются как в быту (в аналоговых паяльных станциях, электронагревательных приборах и т.д.), так и на производстве (например, для запуска мощных силовых установок). В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные.

Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке (подробнее об этом методе будет рассказано ниже).

Назначение и принцип работы

С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания, но и скорость вращение электромоторов, температуру жала паяльника и так далее. Нередко эти устройства называют регуляторами мощности, что не совсем правильно. Устройства, предназначенные для регулирования мощности, основаны на ШИМ (широтно-импульсная модуляция) схемах.

Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.

Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.

  Восстановление гибкости тканевого подвеса АС Diatone

Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.

На основе симистора

Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:

Структурно прибор можно разделить на два блока:

  • Силовой ключ, в роли которого используется симистор.
  • Узел создания управляющих импульсов на основе симметричного динистора.

С помощью резисторов R1-R2 создан делитель напряжения

Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1

Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.

На базе тиристора

Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.

Принцип работы тиристорного прибора следующий:

  • Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
  • После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
  • При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.

Также в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы

.

Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры.

При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами.

Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.

Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.

Читайте также:  Обогреватели коузи отзывы реальные

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.

Минимальная мощность

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.

  6с19п — в двухтактном УМЗЧ, параллельное включение

Половинная мощность

Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.

Мощность, близкая к максимальной

Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) — незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа — создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.

Переключение тиристора через «ноль»

Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Замена симистора (Triac-а) в диммере

Пустотелые заклёпки можно удалить с помощью сверла, заточенного под углом 90°, или с помощью кусачек-бокорезов. Но, чтобы не повредить радиатор, делать это нужно непременно со стороны расположения триака.

Радиаторы, изготовленные из очень мягкого алюминия, при клёпке были немного деформированы. Поэтому, пришлось ошкурить контактные поверхности наждачной бумагой.

  1. Винт М2,5х8.
  2. Шайба пружинная (гровер) М2,5.
  3. Шайба М2,5 – стеклотекстолит.
  4. Корпус симистора.
  5. Прокладка – фторопласт 0,1мм.
  6. Гайка М2,5.
  7. Шайба М2,5.
  8. Трубка (кембрик) Ø2,5х1,5мм.
  9. Шайба М2,5.
  10. Радиатор.

Так как я использовал триак, не имеющий гальванической развязки между электродами и контактной площадкой, то применил старый проверенный способ изоляции. На чертеже видно, как он реализуется.

А это те же детали гальванической развязки триака в натуральном виде.

Для предотвращения продавливания стенки радиатора в месте крепления симистора, под головку винта была подложена шайба. А у самого винта была сточена большая часть шляпки, чтобы последняя не цеплялась за ручку потенциометра, регулятора мощности.

Вот так выглядит симистор, изолированный от радиатора. Для улучшения теплоотвода, использовалась термопроводящая паста КПТ-8.

Что находится под кожухом диммера.

Снова в строю.

Сборка устройства

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться.

Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания.

И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.

Тиристорный регулятор мощности – схема

Основным элементом в этой схеме является тиристор КУ202Н. Транзисторы T1-T2 (КТ315 и КТ361) составляют аналог однопереходного транзистора.

Когда напряжение на конденсаторе 470 nF будет равно напряжению в точке соединения резисторов R3 и R4 (10 кОм и 2,2кОм), тогда транзисторы откроются и подадут сигнал на управляющий электрод тиристора, при этом конденсатор С1 разряжается, а тиристор откроется до следующего полупериода.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной.

Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость.

Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

Тиристорный регулятор мощности с плавным пуском на 1000 Вт

Предыстория создания девайса такова. Задумал я как то покрасить крыло своего автомобиля. Приехал в гараж, подготовился. Так как погода была прохладная, то для быстрой сушки крыла его нужно было нагреть. Из подручных средств, для бесконтактной сушки, я не нашёл ни чего лучше чем прожектор ПКН мощностью 1 кВт.

Однако его лампа выдерживала 10-15 включений. А такую лампу в моём городе найти не такая уж легкая задачка. По этой причине я вооружился давно знакомой мне микросхемкой К1182ПМ1, двумя завалявшимися тиристорами и сделал устройство для плавного включения ПКН. Сначала было собрано устройство без внешних органов управления.

Но позднее я подумал, что такую мощную штуковину можно использовать не только как плавный пуск, но и как регулятор мощности для устройств, потребляющих чисто активную нагрузку. Например, электронагреватель. И тогда было принято решение «прикрутить» к устройству ещё и переменный резистор для ручной регулировки мощности.

Получалось следующее.

  Подвес для динамика из кожи своими руками

Схема устройства проста.

На ней к сети ~220 В последовательно подключается предохранитель на 8 А, нагрузка в виде лампы, и 2 тиристора Т142-80-4-2 включенные встречно параллельно.

Для того чтобы через цепи управления каждого из тиристоров, в нерабочий полупериод, не протекал ток управления, используется развязка из диодов КД411ВМ.

Это гарантирует правильную работу тиристоров во время рабочего полупериода сетевого напряжения.

Резистор 600 Ом используется для ограничения тока управления. А при помощи регулировочного резистора 68 кОм меняется мощность, отдаваемая в нагрузку (в моём случае в качестве нагрузки выступает прожектор).

Принцип работы устройства можно понять из рисунка. Для регулировки мощности изменяется угол открытия тиристоров. Чем больше угол α, тем меньшая часть синусоиды пропускается в нагрузку. Когда α = 1800 оба тиристора полностью закрыты и мощность в нагрузку не передаётся.

Когда α = 00 в нагрузку поступает вся синусоида полностью и соответственно передаётся полная мощность. В первый момент после включения нагрузки угол α всегда равен 1800. Далее он начинает плавно уменьшаться до значения соответствующего текущему положению регулировочного резистора.

За счёт этого и достигается плавный пуск.

Замечу, что данное устройство можно использовать только с активной нагрузкой, так как в случае реактивной нагрузки используются несколько иные способы регулирования мощности.

Максимально допустимый средний ток в открытом состоянии для данных тиристоров составляет 80 А. Не трудно подсчитать, что максимальная мощность, которую можно через них пропустить, равна Р=220*80=17600 Вт.

Однако это теоретическое значение, которое я не проверял на практике и поэтому не возьмусь утверждать что система выдержит мощность в 17 кВт. На практике мной подключалась нагрузка в 1 кВт. При этом радиаторы совершенно не грелись.

Такие большие радиаторы я применил только по той причине, что тиристоры уже были прикручены к ним. Поэтому для данной конструкции подойдут и радиаторы, гораздо меньшего размера.

На этой фотографии к устройству ещё не подключена розетка и сетевой шнур.

P.S. Первоначально печатка разводилась под другие диоды. Но потом жизнь внесла свои коррективы. Поэтому, даже если вы будете ставить диоды КД411ВМ, то печатку лучше переделать под их реальные размеры. Хотя у меня и так влезло

Разработано и изготовлено Дмитрием Чупановым ([email protected])

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Микросхема К1182ПМ1 1 Поиск в магазине Отрон В блокнот
Тиристор Т142-80-4-2 2 Поиск в магазине Отрон В блокнот
Диод КД411В 4 Поиск в магазине Отрон В блокнот
Электролитический конденсатор 100 мкФ 16В 1 Поиск в магазине Отрон В блокнот
Конденсатор 1мкФ 5В 2 Поиск в магазине Отрон В блокнот
Переменный резистор 68 кОм 1 Поиск в магазине Отрон В блокнот
Резистор 3.3 кОм 1 Поиск в магазине Отрон В блокнот
Резистор 600 Ом 1Вт 1 Поиск в магазине Отрон В блокнот
Предохранитель 1 Поиск в магазине Отрон В блокнот
Добавить все

Прикрепленные файлы:

  • Даташиты.rar (1129 Кб)
  • плавный пуск.rar (5 Кб)
Ссылка на основную публикацию
Для любых предложений по сайту: [email protected]